Numerical methods for surrogate modeling

Davide Pradovera KTH Royal Institute of Technology, Stockholm

Stockholm University – January 17, 2025

Get the slides:

- Get acquainted with my research and surrogate modeling in general
- Critical thinking: **reflect** on whether your research can profit from surrogate modeling

A broad overview

► A broad overview

A motivating example

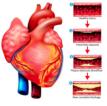
The not-so-nice problems

Conclusions

Trends in scientific computing

Numerical simulations are crucial in many applications:

to study large & complex systems


Trends in scientific computing

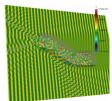
Numerical simulations are crucial in many applications:

- to study large & complex systems
- \cdot to optimize industrial designs
- to take smarter clinical decisions

A broad overview

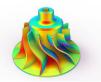
Trends in scientific computing

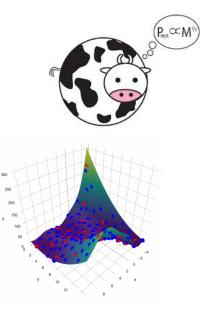
Numerical simulations are crucial in many applications:

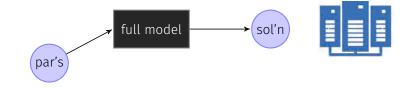

- to study large & complex systems
- \cdot to optimize industrial designs
- to take smarter clinical decisions


High accuracy comes at a price...

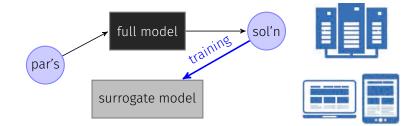
- complex model & implementation
- \cdot computational resources
- \rightarrow high simulation time



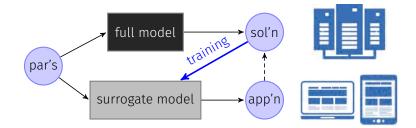


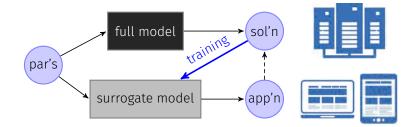

- Develop faster and better methods & algorithms
 - huge challenge in most cases
 - chances of success?

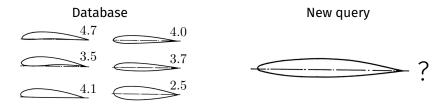
- Develop faster and better methods & algorithms
 - huge challenge in most cases
 - chances of success?
- Simplify model
 - quantify modeling error?

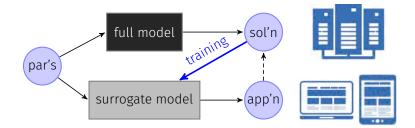


- Develop faster and better methods & algorithms
 - huge challenge in most cases
 - chances of success?
- Simplify model
 - quantify modeling error?
- Surrogate modeling
 - \cdot systematic
 - relies on numerical methods to speed up numerical simulations




Process data coming from expensive simulations


Process data coming from expensive simulations to build a cheap surrogate model that can give **useful** information,



Process data coming from **expensive** simulations to build a **cheap** surrogate model that can give **useful** information, with **"enough" accuracy**

Process data coming from **expensive** simulations to build a **cheap** surrogate model that can give **useful** information, with **"enough" accuracy**

- First papers in computational mechanics in the '80s
- Mathematical momentum since the '00s

[Baur, Benner, Breiten, Cohen, Farhat, Feng, Glas, Haasdonk, Himpe, Huynh, Iapichino, Kramer, Maday, Manzoni, Mula, Nouy, Ohlberger, Panzer, Patera, Peherstorfer, Quarteroni, Rozza, Schwab, Smetana, Stykel, Urban, Veroy-Grepl, Volkwein, Willcox, Zimmermann, ...]

Most contributions are for "nice" problems, where^{*} the solution **depends smoothly on the parameters**

A motivating example

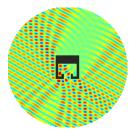
► A broad overview

► A motivating example

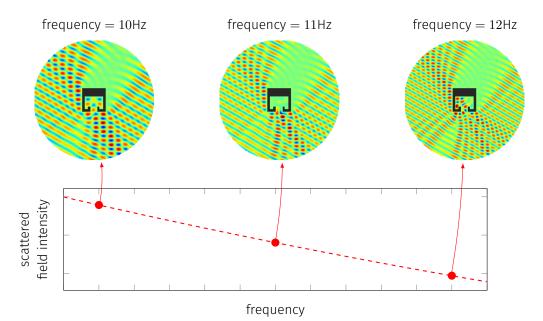
The not-so-nice problems

Conclusions

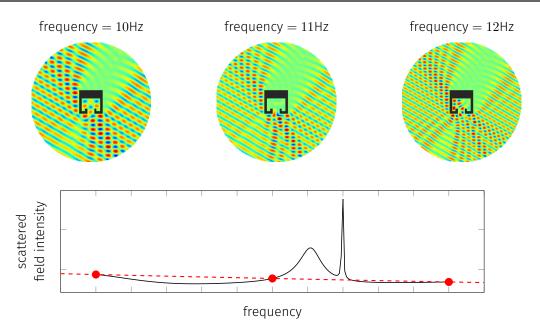
EM scattering


Scattering (EM/acoustic) has applications in engineering, communications, warfare, etc.

frequency = 11Hz



frequency = 12Hz


A motivating example

EM scattering

A motivating example

EM scattering

Given the three expensive data points,

- what is the **best** surrogate model we can **build**? \rightarrow **best approximation class**
- \cdot can we estimate the approximation error we are committing? \rightarrow model certification

Given the three expensive data points,

- \cdot what is the **best** surrogate model we can **build**? \rightarrow **best approximation class**
- · can we estimate the approximation error we are committing? \rightarrow model certification

If we can afford more samples,

- \cdot where to place the 4th sample to get the most information? \rightarrow optimal information
- how many samples to achieve a user-prescribed error tolerance? \rightarrow adaptivity

lf

Given the three expensive data points,

 what is th 	for "nice" problems	can build?	ightarrow best approximation class
• can we es			committing? \rightarrow model certification
	understood since the		
f we can affor	seminal papers in '00s)	

- where to place the 4th sample to get the most information? \rightarrow optimal information
- how many samples to achieve a user-prescribed error tolerance? \rightarrow adaptivity

Given the three expensive data points,

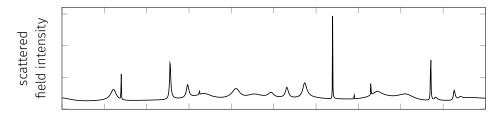
- what is the for "nice" problems an build? → best approximation class
 can we es these have been well understood since the seminal papers in '00s
 - where to place the 4th sample to get the most information? \rightarrow optimal information
 - how many samples to achieve a user-prescribed error tolerance? → adaptivity

Can we remain agnostic of the discretization?

 $\rightarrow \text{non-intrusiveness}$

► A broad overview

► A motivating example


▶ The not-so-nice problems

Conclusions

The paradigm

Tame the problem ↓ Handle the approximation ↓ Apply surrogate modeling

Taming the problem

Task: understand the cause of the spikes

Tools: spectral theory of operators, perturbation theory, complex analysis, PDE theory

Taming the problem

Task: understand the cause of the spikes

Tools: spectral theory of operators, perturbation theory, complex analysis, PDE theory

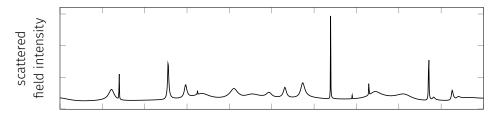
Answer (simplified): if a problem depends **smoothly** on parameters, its solution depends **meromorphically** on parameters

$$\underbrace{\mathcal{L}(\mu)^{-1}}_{\text{smooth}} = \underbrace{\mathcal{H}(\mu)}_{\text{smooth}} + \sum_{i} \frac{\mathcal{P}_{i}}{(\mu - \lambda_{i})^{\alpha_{i}}}$$

Taming the problem

Task: understand the cause of the spikes

Tools: spectral theory of operators, perturbation theory, complex analysis, PDE theory


Answer (simplified): if a problem depends **smoothly** on parameters, its solution depends **meromorphically** on parameters

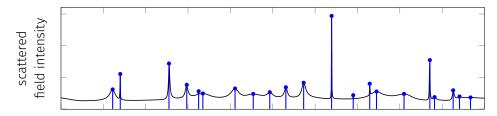
Outcome: seek the surrogate model within meromorphic functions!

 \rightarrow best approximation class & inference

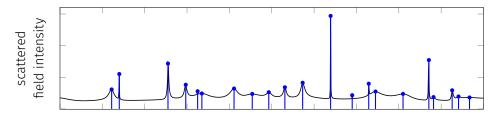
[Bonizzoni&Nobile&Perugia&P'20]×2, [P'20], [Bonizzoni&P&Ruggeri'23], [Huwiler&P&Schiffmann'24], [P&Borghi'24], [Hiptmair&Perugia&P'25+]

Taming the problem

Task: understand the cause of the spikes


Tools: spectral theory of operators, perturbation theory, complex analysis, PDE theory

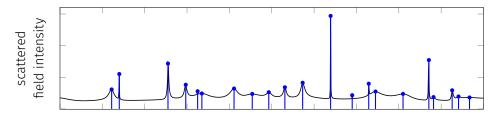
Answer (simplified): if a problem depends **smoothly** on parameters, its solution depends **meromorphically** on parameters


Outcome: seek the surrogate model within meromorphic functions!

 \rightarrow best approximation class & inference

Challenges: nonlinear operators, high number of parameters

Issue: the approximation task is nonlinear



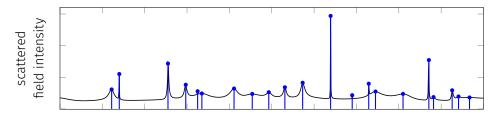
Issue: the approximation task is nonlinear

Tools: rational approximation, "machine" learning, adaptive sampling

$$\left(\sum_{j} \frac{v_j}{x - x_j} \middle/ \sum_{j} \frac{w_j}{x - x_j} \right)$$

Rich literature from approximation theory & control theory

Issue: the approximation task is nonlinear


Tools: rational approximation, "machine" learning, adaptive sampling

$$\left(\sum_{j} \frac{v_j}{x - x_j} \middle/ \sum_{j} \frac{w_j}{x - x_j} \right)$$

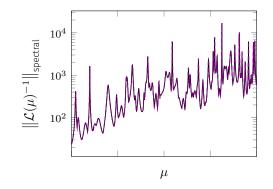
Result (with lots of effort): advanced algorithms for rational approximation!

 \rightarrow optimal information & adaptivity

[P'20], [P&Nobile'21], [P&Nobile'22], [P'23], [P&Borghi'24], [P&Gosea&Heiland'25+]

Issue: the approximation task is nonlinear

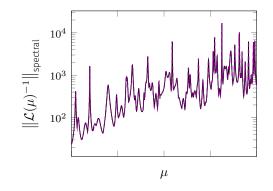
Tools: rational approximation, "machine" learning, adaptive sampling


$$\left(\sum_{j} \frac{v_j}{x - x_j} \middle/ \sum_{j} \frac{w_j}{x - x_j} \right)$$

Result (with lots of effort): advanced algorithms for rational approximation!

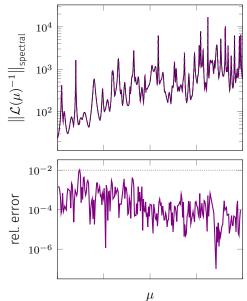
ightarrow optimal information & adaptivity

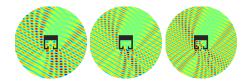
Challenges: put user first, high number of parameters


Applying surrogate modeling – Scattering amplification factor (w/ R. Hiptmair & I. Perugia)

Tame: piecewise-meromorphic (kinks may happen)

Applying surrogate modeling – Scattering amplification factor (w/ R. Hiptmair & I. Perugia)

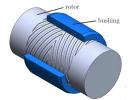




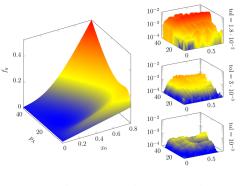
Tame: piecewise-meromorphic (kinks may happen)

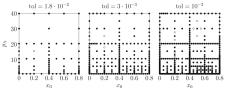
Handle: non-intrusive fully adaptive piecewise-rational approximation

Applying surrogate modeling – Scattering amplification factor (w/ R. Hiptmair & I. Perugia)

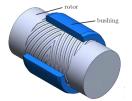


piecewise-meromorphic (kinks Tame: may happen)

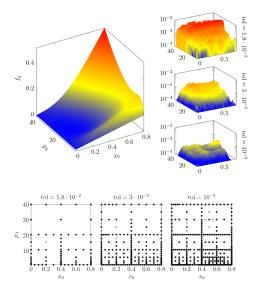

non-intrusive fully adaptive Handle: piecewise-rational approximation


Solve: versatile user-friendly open**source** algorithm (only input: tol!); computational speed-up of 3 OoMs!

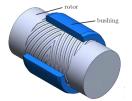
Applying surrogate modeling - Stiffness parameters of nonlinear bearing (w/ P. Huwiler & J. Schiffmann)



Tame: 7D cw-meromorphic; (closed-source) problem is **fully nonlinear** in μ

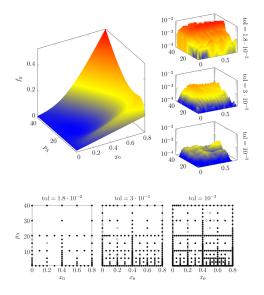


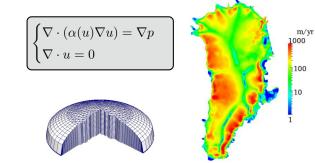
Applying surrogate modeling – Stiffness parameters of nonlinear bearing (w/ P. Huwiler & J. Schiffmann)



Tame: 7D cw-meromorphic; (closed-source) problem is fully nonlinear in μ

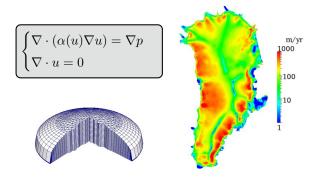
Handle: non-intrusive fully adaptive hybrid smooth-rational approximation


Applying surrogate modeling – Stiffness parameters of nonlinear bearing (w/ P. Huwiler & J. Schiffmann)


Tame: 7D cw-meromorphic; (closed-source) problem is **fully nonlinear** in μ

Handle: non-intrusive fully adaptive hybrid smooth-rational approximation

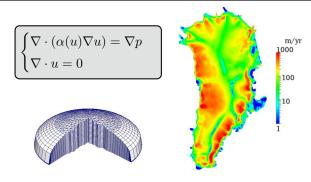
Solve: versatile user-friendly opensource algorithm (only input: tol!); speed-up of 3 OoMs (15d \rightarrow 1h)!



Applying surrogate modeling? – Ice sheet modeling [Ahlkrona et al.'16]

Tame?: expensive nonlinear Stokes equation

Applying surrogate modeling? – Ice sheet modeling [Ahlkrona et al.'16]


Tame?: expensive nonlinear Stokes equation

Which features are important?

- \rightarrow inf-sup stability?
- \rightarrow not a "nice" problem?
- \rightarrow multi-scale features?

Handle?: what approximation strategy is best to keep such important features?

Applying surrogate modeling? – Ice sheet modeling [Ahlkrona et al.'16]

- Tame?: expensive nonlinear Stokes equation
- Which features are important?
 - \rightarrow inf-sup stability?
- \rightarrow not a "nice" problem?
- \rightarrow multi-scale features?

Handle?: what approximation strategy is best to keep such important features?

Just in the last two months on arXiv:

[Ye et al., "Reconstructing MODIS normalized difference snow index product on Greenland ice sheet using spatiotemporal extreme gradient boosting model"]

[Liu et al., "Multi-branch spatio-temporal gNN for efficient ice layer thickness prediction"]

[Aretz et al., "Multifidelity uncertainty quantification for ice sheet simulations"]

Conclusions

► A broad overview

► A motivating example

▶ The not-so-nice problems

Conclusions

Summary

Summary

Surrogate modeling = developing numerical methods for numerical methods

Summary

Summary

Surrogate modeling = developing numerical methods for numerical methods

Recipe

- \cdot \mathbf{Tame} complex behavior by understanding its root causes
- Handle non-linear approximation task by effective adaptive numerical methods
- Apply surrogate modeling to challenging real-life applications

Summary

Summary

Surrogate modeling = developing numerical methods for numerical methods

Recipe

- Tame complex behavior by understanding its root causes
- Handle non-linear approximation task by effective adaptive numerical methods
- Apply surrogate modeling to challenging real-life applications

Take-home

• What can surrogate modeling do for *your* problem?

Conclusions

Thanks to my collaborators!

Thank you all for your attention!

pradovera.github.io