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Get the slides:

- Get acquainted with my research and

surrogate modeling in general

- Critical thinking: reflect on whether your research

can profit from surrogate modeling
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Trends in scientific computing

Numerical simulations are crucial in
many applications:

- to study large & complex systems
- to optimize industrial designs

- to take smarter clinical decisions

High accuracy comes at a price...
- complex model & implementation
- computational resources

— high simulation time
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Surrogate modeling

How to speed up simulations?

- Develop faster and better
methods & algorithms

- huge challenge in most cases
- chances of success?

- Simplify model

- quantify modeling error?

- Surrogate modeling =
- systematic w
- relies on numerical methods to speed

up numerical simulations ;
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Surrogate modeling

W ilgli

Process data coming from expensive simulations
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Surrogate modeling

surrogate model

Process data coming from expensive simulations to build a cheap surrogate model that
can give useful information, with “enough” accuracy
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Surrogate modeling

surrogate model ———

- First papers in computational mechanics in the '80s
- Mathematical momentum since the '00s

[Baur, Benner, Breiten, Cohen, Farhat, Feng, Glas, Haasdonk, Himpe, Huynh, lapichino,
Kramer, Maday, Manzoni, Mula, Nouy, Ohlberger, Panzer, Patera, Peherstorfer, Quarteroni,
Rozza, Schwab, Smetana, Stykel, Urban, Veroy-Grepl, Volkwein, Willcox, Zimmermann, ...]

Most contributions are for “nice” problems, where”

the solution depends smoothly on the parameters
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EM scattering

Scattering (EM/acoustic) has applications in engineering, communications, warfare, etc.

frequency = 10Hz frequency = 11Hz frequency = 12Hz
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Challenges
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Challenges

Given the three expensive data points,
- what is the best surrogate model we can build? — best approximation class
- can we estimate the approximation error we are committing? — model certification
If we can afford more samples,

- where to place the 4" sample to get the most information? — optimal information
- how many samples to achieve a user-prescribed error tolerance? — adaptivity
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Challenges

Given the three expensive data points,

- what is th n build? — best approximation class

for “nice” problems
- canwee these have been well for we are committing? — model certification
understood since the

If we can affo seminal papers in '00s

- where to place the 4" sample to get the most information? — optimal information

- how many samples to achieve a user-prescribed error tolerance? — adaptivity

Can we remain agnostic of the discretization? — non-intrusiveness
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The paradigm

Tame the problem

!

Handle the approximation

1
Apply surrogate modeling
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Taming the problem

scattered
field intensity

Task: understand the cause of the spikes

Tools: spectral theory of operators, perturbation theory, complex analysis, PDE theory
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Taming the problem

scattered
field intensity

Task: understand the cause of the spikes
Tools: spectral theory of operators, perturbation theory, complex analysis, PDE theory

Answer (simplified): if a problem depends smoothly on parameters, its solution depends
meromorphically on parameters
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Taming the problem

scattered
field intensity

Task: understand the cause of the spikes
Tools: spectral theory of operators, perturbation theory, complex analysis, PDE theory

Answer (simplified): if a problem depends smoothly on parameters, its solution depends
meromorphically on parameters

Outcome: seek the surrogate model within meromorphic functions!
— best approximation class & inference

[Bonizzoni&Nobile&Perugia&P'20]x2, [P'20], [Bonizzoni&P&Ruggeri'23],
[Huwiler&P&Schiffmann’24], [P&Borghi'24], [Hiptmair&Perugia&P'25+]
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Taming the problem

scattered
field intensity

Task: understand the cause of the spikes
Tools: spectral theory of operators, perturbation theory, complex analysis, PDE theory

Answer (simplified): if a problem depends smoothly on parameters, its solution depends
meromorphically on parameters

Outcome: seek the surrogate model within meromorphic functions!
— best approximation class & inference

Challenges: nonlinear operators, high number of parameters
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Handling the approximation

scattered
field intensity

Issue: the approximation task is nonlinear

Tools: rational approximation, “machine” learning, adaptive sampling

:L’—x]/ x—:z:]

Rich literature from approximation theory & control theory
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Handling the approximation

scattered
field intensity

Issue: the approximation task is nonlinear

Tools: rational approximation, “machine” learning, adaptive sampling

x—x]/ x—x]

Result (with lots of effort): advanced algorithms for rational approximation!
— optimal information & adaptivity

[P'20], [P&Nobile'21], [P&Nobile'22], [P'23], [P&Borghi'24], [P&Gosea&Heiland'25+]
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Handling the approximation

scattered
field intensity

Issue: the approximation task is nonlinear

Tools: rational approximation, “machine” learning, adaptive sampling

x—x]/ x—x]

Result (with lots of effort): advanced algorithms for rational approximation!
— optimal information & adaptivity

Challenges: put user first, high number of parameters
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Applying surrogate modeling — Scattering amplification factor (w/ R. Hiptmair & I. Perugia)
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Applying surrogate modeling — Scattering amplification factor (w/ R. Hiptmair & I. Perugia)

10

103

Tame: piecewise-meromorphic (kinks
may happen)

H[’(M)_lepectral

102

! ! | Handle: non-intrusive fully adaptive
piecewise-rational approximation

Solve: versatile user-friendly open-
source algorithm (only input: tol!);
computational speed-up of 3 OoMs!

rel. error
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Applying surrogate modeling - Stiffness parameters of nonlinear bearing (w/ P. Huwiler & J. Schiffmann)
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Applying surrogate modeling - Stiffness parameters of nonlinear bearing (w/ P. Huwiler & J. Schiffmann)
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Tame: 7D cw-meromorphic; (closed-
source) problem is fully nonlinear in u
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Handle: non-intrusive fully adaptive hy-
brid smooth-rational approximation
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Applying surrogate modeling - Stiffness parameters of nonlinear bearing (w/ P. Huwiler & J. Schiffmann)
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Applying surrogate modeling? - Ice sheet modeling [Ahlkrona et al.16]

" . Tame?: expensive nonlinear
o Stokes equation
V - (a(u)Vu) = Vp XS ! m/
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Applying surrogate modeling? - Ice sheet modeling [Ahlkrona et al.16]

" - Tame?: expensive nonlinear
oy 2 Stokes equation
{V (a(u)Vu) = Vp 4 ‘s PS’K“ Which features are important?
t B | — inf-sup stability?
b " — not a “nice” problem?
L10 — multi-scale features?
! Handle?: what approximation

strategy is best to keep such im-
portant features?
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Applying surrogate modeling? - Ice sheet modeling [Ahlkrona et al.16]

N
{v- (a(u)Vu) = Vp o A i
V.-u=0 “T M
’I - “ 7100
- \ &
‘ , ‘:v 10
Y ?‘-‘;‘i ds

Just in the last two months on arXiv:

Tame?: expensive nonlinear
Stokes equation

Which features are important?
— inf-sup stability?

— not a “nice” problem?

— multi-scale features?

Handle?: what approximation
strategy is best to keep such im-
portant features?

[Ye et al., “Reconstructing MODIS normalized difference snow index product on Greenland
ice sheet using spatiotemporal extreme gradient boosting model”]

[Liu et al.,, “Multi-branch spatio-temporal gNN for efficient ice layer thickness prediction”]

[Aretz et al.,, “Multifidelity uncertainty quantification for ice sheet simulations”]
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Summary

Summary

Surrogate modeling = developing numerical methods for numerical methods

Recipe

- Tame complex behavior by understanding its root causes
- Handle non-linear approximation task by effective adaptive numerical methods
- Apply surrogate modeling to challenging real-life applications

Take-home

- What can surrogate modeling do for your problem?

14/15



a Numerical methods for surrogate modeling
ConClUSIOnS Davide Pradovera, KTH

The end?

Thanks to my collaborators!
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Thank you all for your attention! | pradovera.github.io
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