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Abstract

The scope of this project is the implementation of the mortar method for the enforcement of

smooth contact constraints in an open-source finite element framework. Smooth contact con-

straints are rigorously defined, and two approaches to their enforcement (penalty and Lagrange

multipliers) are derived rigorously. A detailed description of a complete algorithm for the appli-

cation of such methods is provided, with a particular attention to the strategies used to tackle

non-linearities. Then a brief presentation of the most important features of the implementation

of the algorithm is given. To check the correctness of the implementation, several tests are

performed: in particular the numerical results are compared with the hertzian solution for a

problem of unilateral smooth contact.
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1 Introduction

Contact mechanics have a great importance because of their many applications in engineering

and industry. In the last decades, research on this topic has spawned several strategies for the

implementation of contact models: Lagrange multipliers, penalty and Nitsche methods are just

some of the more known examples, which are widely applied in the field of computational solid

mechanics.

In problems in which a mesh-based discretization is applied (which is of common practice,

for example in finite elements or finite differences approaches), the application of any of the

aforementioned methods may be complicated by non-matching meshes at the contact interface

(see Figure 1). Such situations may easily occur even in the case of static analysis, because of

the necessity to discretize differently two objects (or even portions of a single body), or simply

as a consequence of the use of general mesh generators [1].

Figure 1: Non-matching discretizations at the contact interface.

Among the (many) results that recent research has lead to, this paper focuses on the mortar

method as a way to apply contact conditions between non-matching meshes, and describes in

detail the implementation of said method within the framework of Akantu [7], a free software

which is being developed by the Laboratoire de Simulation en Mécanique des Solides (LSMS)

at EPFL.
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2 The mortar method

In this section, a brief overview of the mathematical foundations of the mortar method will

be provided, along with the basic notation needed for its application to isoparametric finite

elements. Most of the dissertation will be based on [1].

2.1 Background and notation

Given a smooth domain Ω ⊆ Rd (with d ∈ {1, 2, 3}) partitioned in the (possibly empty) subsets

ΓD and ΓN and a suitable functional space V (e.g. V =
(
H1(Ω)

)d
), the general formulation of

the (potential) energy of Ω for a given displacement ϕ is:

Π(ϕ) =
1

2

∫
Ω
σ(ϕ) : ε(ϕ) dX−

∫
Ω
ρb ·ϕ dX−

∫
ΓN

t ·ϕ dX (1)

where ϕ respects some boundary conditions on ΓD:

ϕ ∈ Vu = {ψ ∈ V s.t. ψ = u on ΓD} (2)

In the formulae above, σ is the Cauchy stress tensor, ρb is the volume force field, n is the

outer normal vector to ∂Ω, u and t are vector fields (which represent the boundary values for

displacement field and stress vector field respectively).

Moreover we will suppose that linear elasticity holds:
σ(ϕ) = C [ε(ϕ)]

ε(ϕ) = ∇ϕ+∇T ϕ
2

(3)

where ε is the linear strain tensor and C is the (linear) elasticity tensor.

Under smoothness and compatibility assumptions on u and t, if |ΓD| > 0, it can be proven

that Π(u) is strictly convex. Hence it admits a unique minimum point u, which may be found

by solving

∂ηΠ(u) := lim
h→0

Π(u+hη)−Π(u)

h
= 0 ∀η ∈ V0 (4)

which, exploiting the linearity of C, can be written as∫
Ω
σ(u) : ε(η) dX =

∫
Ω
ρb · η dX+

∫
ΓN

t · η dX ∀η ∈ V0 (5)

with

V0 = {ψ ∈ V s.t. ψ = 0 on ΓD} (6)

In order to obtain a numerical approximation of the solution, a computational mesh Ωh

is introduced to discretize Ω (see Figure 2). Each of the nodes is characterized by a position

Xi ∈ Rd and an unknown displacement ui ∈ Rd.
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Figure 2: Domain discretization with triangular linear elements and isoparametric mapping

from the reference element to the element Ωe.

For each mesh element Ωe, a (topologically equivalent) reference element Ωref is considered,

and a bijective mapping ϕe : Ωref → Ωe is defined (see Figure 2). By using this mapping, both

geometry and field variables defined on Ωe can be expressed on Ωref (in terms of the natural

coordinates ξ) through a composition with (ϕe)−1.

The mapping ϕe is defined in terms of a lagrangian1 local basis {N e
I (ξ)}Ne

I=1 of a given finite-

dimensional vector space on the reference element (a polynomial space or a tensor product of

polynomial spaces). For example, coordinates and displacements are defined as interpolations

of their respective nodal values:

Xe(ξ) :=

Ne∑
I=1

N e
I (ξ)Xe

I and ue(ξ) :=

Ne∑
I=1

N e
I (ξ)ueI (7)

and the current positions can be obtained as

xe(ξ) = Xe(ξ) + ue(ξ) =
Ne∑
I=1

N e
I (ξ) (Xe

I + ueI) =
Ne∑
I=1

N e
I (ξ)xeI (8)

In general ϕe is non-linear in ξ, but any interpolated field is always linear in its nodal values.

The Galerkin method can now be applied to problem (5) by introducing a finite-dimensional

space V h ⊆ V to approximate V . The definition of V h is based on the mesh Ωh: the elements

of V h are usually chosen as globally continuous functions which are piecewise defined on Ωh.

Then one has to define2 the affine space

V h
u = {ψ ∈ V h s.t. ψ = u on ΓD} (9)

1If {ξI}N
e

I=1 are the natural coordinates of the nodes, a lagrangian basis {Ne
I (ξ)}N

e

I=1 has the property that

Ne
I

(
ξJ

)
= δIJ for I, J = 1, . . . , Ne

2If the domain Ω does not coincide with the mesh Ωh (see Figure 2), in general the Galerkin method is non-

conforming, since V h
u * Vu and V h

0 * V0. In this case one should replace the Dirichlet boundary ΓD with its

approximation on the mesh in the two definitions (9) and (10).
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and the subspace

V h
0 = {ψ ∈ V h s.t. ψ = 0 on ΓD} (10)

to approximate Vu and V0 respectively. Moreover a basis {vi}
dimV h

0
i=1 of V h

0 has to be chosen:

because of its local support, the lagrangian basis on the nodes of the mesh is commonly used.

If this is the case one can define element-wise the global basis {vi}
dimV h

0
i=1 in terms of the local

basis {N e
I }N

e

I=1.

By exploiting the arbitrariness3 of virtual displacements η in (5), an equivalent formulation

can be obtained:

find u ∈ V h
u s.t.

∫
Ω
σ(u) : ε(vi) dX =

∫
Ω
ρb·vi dX+

∫
ΓN

t·vi dX for i = 1, . . . ,dimV h
0 (11)

Furthermore, the integrals appearing in the weak formulation (11) can be computed element-

wise and one can obtain relations of the form4

find {uj}dimV h

j=1 ⊂ Rd s.t.

dimV h∑
j=1

Kijuj = fi for i = 1, . . . ,dimV h (12)

where the coefficients Kij ∈ Rd×d and fi ∈ Rd depend on the boundary conditions, on the

geometry of the problem, on the constitutive relation (3) and on the choice of the basis on each

element {N e
I }N

e

I=1.

In the end the problem can be expressed as

Kû = f̂ (13)

where K ∈ R(Nnodesd)×(Nnodesd), û, f̂ ∈ RNnodesd and

(K)di+j,dk+l = (Kik)jl , (û)di+j = (ui)j and (f̂)di+j = (fi)j (14)

for i, k = 1, . . . , Nnodes and j, l = 1, . . . , d.

2.2 Mortar method for smooth contact

We consider the situation where two bodies Ωnm and Ωm (the notation stands for “non-mortar”

and “mortar” respectively) may come into contact (the extension to the case of self-contact is

mostly trivial). The contact conditions are enforced on the two portions of the boundaries Γnm

and Γm which are expected to come into contact. For any displacement field ϕ the deformed

boundaries are given by

γnm,ϕ := {X+ϕ(X) s.t. X ∈ Γnm} (15)

γm,ϕ := {X+ϕ(X) s.t. X ∈ Γm} (16)

3To each nodal value ηi of the virtual displacements corresponds the equation indexed by i in (12).
4With respect to (11), one obtains dimV h−dimV h

0 additional equations of the form ui = ui from the Dirichlet

boundary conditions, i.e. by imposing that u belongs to V h
0 ⊂ V h.
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The projection operator

p(ϕ) : γnm,ϕ → γm,ϕ

is defined in the following way: for a given xnm ∈ γnm,ϕ, p(ϕ)(xnm) ∈ γm,ϕ is the closest point5

to xnm on the deformed mortar side γm,ϕ.

The constraint which prevents interpenetration between the bodies can be expressed as

(x−p(ϕ)(x)) · nm,ϕ(p(ϕ)(x)) ≥ 0 ∀x ∈ γnm,ϕ (17)

where nm,ϕ(x) represents the outer normal to γm,ϕ at point x ∈ γm,ϕ (see Figure 3). This

condition is usually translated as

g
(ϕ)
N (X) ≥ 0 ∀X ∈ Γnm or g−N

(ϕ)
(X) = 0 ∀X ∈ Γnm (18)

where the normal gap g
(ϕ)
N (X) and the normal penetration g−N

(ϕ)
(X) are respectively defined as

g
(ϕ)
N (X) = ((X+ϕ(X))− p(ϕ)(X+ϕ(X))) · nm,ϕ

(
p(ϕ)(X+ϕ(X))

)
(19)

and

g−N
(ϕ)

(X) =


g

(ϕ)
N (X) if g

(ϕ)
N (X) < 0

0 otherwise

(20)

for X ∈ Γnm.

γm,ϕ

γnm,ϕ

xm

xnm

nm,ϕ(xm)

Figure 3: Surfaces which may come in contact (xnm := Xnm +ϕ(Xnm) and xm := p(ϕ)(xnm)).

In order to include this condition in the model, an additional contribution to the energy

functional (1) has to be considered:

Πtotal = Π + Πcontact (21)

5If Γm is non-empty, there exists at least one point which fulfils the definition. Uniqueness issues will be

discussed in Section 2.3.
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2.2.1 Lagrange multipliers approach

In the Lagrange multipliers approach, the additional contribution to the energy is

Πcontact(ϕ, µ) = Πlag(ϕ, µ) :=

∫
Γnm

µg
(ϕ)
N dX (22)

where µ is a (non-negative) scalar field defined on Γnm which represents the Lagrange multiplier

corresponding to the contact constraint (18).

Now, in the computation of the equilibrium configuration, one has to consider the variation

with respect to both ϕ and µ:

find u ∈ Vu, λ ∈ Q,λ ≥ 0 s.t.
∫

Ω σ(u) : ε(η) dX+
∫

Γnm λδg
(u)
N [η] dX =

∫
Ω ρb · η dX+

∫
ΓN

t · η dX ∀η ∈ V0∫
Γnm δλ g

(u)
N dX = 0 ∀δλ ∈ Q

(23)

whereQ is a suitable functional space defined on Γnm (e.g. Q = L2(Γnm)) and δg
(u)
N [η] represents

the variation of g
(u)
N in direction η (see Section 2.4 for a rigorous definition).

The Galerkin approximation of (23) can be obtained similarly to the case discussed in the

previous paragraph. However, one must choose an additional finite-dimensional space Qh ⊆ Q in

which to approximate the Lagrange multiplier profile. Usually the elements of Qh are piecewise

polynomials6, whose degrees of freedom are nodal values on the boundary {λi}dimQh

i=1 ⊂ R.

Lagrange multipliers can now be defined on each facet7 f of the non-mortar boundary in an

isoparametric fashion:

λf (ξ) :=
Mf∑
I=1

Mf
I (ξ)λfI (24)

where {Mf
I (ξ)}Mf

I=1 is a lagrangian local basis for the Lagrange multipliers and {λfI }M
f

I=1 ⊆

{λi}dimQh

i=1 are the nodal values of λ which are relevant for facet f (i.e. the values corresponding

to Lagrange nodes belonging to f).

By exploiting the arbitrariness8 of virtual displacements η and lagrange multipliers varia-

tions δλ in (23), one can obtain an approximate relation of the form (see Section 3.4.1)

find {uk}dimV h

k=1 ⊂ Rd, {λl}dimQh

l=1 ⊂ R+ s.t.
∑dimV h

k=1 Kikuk +
∑dimQh

l=1 milλl = fi for i = 1, . . . ,dimV h∑dimV h

k=1 mkj · uk = gj for j = 1, . . . ,dimQh
(25)

6Sometimes the hypothesis of global continuity is dropped to gain other properties, see e.g. dual Lagrangian

basis approaches in [1].
7We will call facet a portion of the boundary of an element e delimited by vertices (in 2D) or edges (in 3D)

of e.
8To each nodal value ηi of the virtual displacements corresponds the equation indexed by i in (25), whereas

to each nodal value δλj of the Lagrange multipliers variations corresponds the equation indexed by j in (25).
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where the new coefficients mkl ∈ Rd and gj ∈ R depend on the active contact area Γnm, on the

geometry of the problem, on the local basis on each element {N e
I }N

e

I=1 and the local basis on

each non-mortar facet {Mf
I }M

f

I=1. In general the explicit expressions of these coefficients is not

available, since they involve the non-linear projection function p(ϕ). Numerical approximations

based on quadrature formulae will be provided in Section 3.4.1.

An equivalent expression for (25) is given by K M

MT 0

 û

λ̂

 =

 f̂

ĝ

 (26)

where K, û and f̂ are the same as in (14). M ∈ R(Nnodesd)×dimQh
and λ̂, ĝ ∈ RdimQh

are given

by

(M)di+j,k = (mik)j , (λ̂)k = λk and (ĝ)k = gk (27)

for i = 1, . . . , Nnodes, j = 1, . . . , d and k = 1, . . . ,dimQh.

2.2.2 Penalty approach

The penalty approach provides an approximation of the contact constraint (18). The additional

contribution to the energy is

Πcontact(ϕ) = Πpen(ϕ) :=
1

2

∫
Γnm

εpen

(
g−N

(ϕ)
)2

dX (28)

The number εpen > 0 is commonly called penalty parameter, and represents the stiffness of

an elastic repulsion constraint due to normal penetration. For any given value εpen some residual

penetration will be present in the solution so that the fictitious elastic force can balance the

bulk elasticity. Larger penalty parameters lead to more accurate results: the limit solution for

εpen →∞ coincides with the one obtained with the Lagrange approach [1].

In this case the weak formulation (5) becomes

find u ∈ Vu s.t.

∫
Ω
σ(u) : ε(η) dX+

∫
Γnm

εpeng
−
N

(u)
δg

(u)
N [η] dX =

=

∫
Ω
ρb · η dX+

∫
ΓN

t · η dX ∀η ∈ V0 (29)

where δg
(u)
N [η] represents the variation9 of g

(u)
N in direction η (see Section 2.4).

9The variation of the normal penetration δg−N
(u)

[η] has been replaced with the variation of the normal gap

δg
(u)
N [η]. If the gap is negative they are indeed the same (see (20)); if the gap is non-negative, they are different,

but g−N
(u)
δg−N

(u)
[η] = g−N

(u)
δg

(u)
N [η] = 0 since the penetration is zero.
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The Galerkin approximation of (29) can be obtained similarly to the case in which no contact

is present. The final result can be approximated as (see Section 3.4.2)

find {uj}dimV h

j=1 ⊂ Rd s.t.

dimV h∑
j=1

(Kij + εpenδKij)uj = (fi + εpenδfi) for i = 1, . . . ,dimV h

(30)

where the new coefficients δKij ∈ R(d×d) and δ f i ∈ Rd depend on the active contact area Γnm,

on the geometry of the problem and on the choice of the basis on each element {N e
I }N

e

I=1. In

general the explicit expressions of these coefficients is not available, since they involve the non-

linear projection function p(ϕ). Numerical approximations based on quadrature formulae will

be provided in Section 3.4.2.

An equivalent expression for (30) is given by

(K + εpenδK) û = f̂ + εpenδ̂ f (31)

where K, û and f̂ are the same as in (14) and δK ∈ R(Nnodesd)×(Nnodesd) and δ̂ f ∈ R(Nnodesd) are

given by

(δK)di+j,dk+l = (δKik)jl and (δ̂f)di+j = (δfi)j (32)

for i, k = 1, . . . , Nnodes and j, l = 1, . . . , d.

2.3 Uniqueness and smoothness of the projection operator

Since the mortar boundary is non-empty, the existence of p(ϕ) (X+ϕ(X)) is guaranteed for any

displacement field ϕ and any point X. However, in general it is neither unique nor continue,

as shown in Figure 4: for X1, two equidistant points (X2 and X3) can be chosen as possible

projections.

Γm1
Γm2

Γm3

Γnm1
X1

X2
X3

X4 X5

X6

X

Figure 4: Computation of the projection operator for some points of Γnm1 . The projection

p(0)(X1) may be chosen among the two values X2 and X3. Also, p(0)(X) = X6 for all points X

between X4 and X5.
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Also, it is possible to observe that the projection operator is continuous (in X) everywhere

except in a set of points of zero measure (only X1 in the example shown in Figure 4): this can

be proven rigorously, under some regularity assumptions on the mortar boundary (which hold

in all mesh-based applications).

Using a similar argument, the continuity of p(ϕ) (X+ϕ(X)) with respect to ϕ can be shown

for any displacement field, except for those which cause the previously described singularities.

2.4 Variation of normal gap

In this section the variation of the normal gap will be properly defined and derived in the

isoparametric case. The variation of the normal gap at point X in configuration u in direction

η is given by

δg
(u)
N [η](X) := g

(u+η)
N (X)− g(u)

N (X) (33)

The point X ∈ Rd belongs to some non-mortar facet Γnmi , hence one can write

x := X+u(X) =
NΓnm

i∑
I=1

N
Γnm
i

I (ξ)
(
X

Γnm
i
I + u

Γnm
i
I

)
(34)

where {NΓnm
i

I }NΓnm
i

I=1 is some basis defined on Γnmi , and ξ =
(
ϕΓnm

i
)−1

(X) is some value of the

natural coordinates on Γnmi . X
Γnm
i
I and u

Γnm
i
I represent the nodal values of, respectively, the

undeformed position and the displacement field on Γnmi .

Similarly, the point p(u)(x) belongs to some mortar facet Γmj , hence one can write

p(u)(x) =
N

Γm
j∑

I=1

N
Γm
j

I (ζ)
(
X

Γm
j

I + u
Γm
j

I

)
(35)

where {N
Γm
j

I }N
Γm
j

I=1 is some basis defined on Γmj , and ζ =
(
ϕΓm

j

)−1 (
p(u)(x)

)
is some value of

the natural coordinates on Γmj . X
Γm
j

I and u
Γm
j

I represent the nodal values of, respectively, the

undeformed position and the displacement field on Γmj .

Now we define

x̃ := X + (u+η) (X) =
NΓnm

i∑
I=1

N
Γnm
i

I (ξ)
(
X

Γnm
i
I + u

Γnm
i
I + η

Γnm
i
I

)
(36)

For almost every X (one has to exclude the zero-measure set which causes singularities in the

projection operator), p(ϕ)(X+ϕ(X)) is continuous in ϕ (see Section 2.3). Hence the projection

in the perturbed configuration p(u+η)(x̃) lies almost surely on the same mortar facet as p(u)(x),

at least for η small enough.
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Thus, ζ̃(η) =
(
ϕΓm

j

)−1 (
p(u+η)(x̃)

)
is well defined, and p(u+η)(x̃) can be written by using

the local basis on Γmj :

p(u+η)(x̃) =

N
Γm
j∑

I=1

N
Γm
j

I

(
ζ̃(η)

)(
X

Γm
j

I + u
Γm
j

I + η
Γm
j

I

)
(37)

Also, another consequence of the continuity of p(ϕ) is:

lim
‖η ‖→0

ζ̃(η) = ζ (38)

since the limit projection coincides with p(u)(x).

Hence definition (33) yields10

δg
(u)
N [η](X) = (x̃− p(u+η)(x̃)) · nm,u+η

(
p(u+η)(x̃)

)
− (x−p(u)(x)) · nm,u

(
p(u)(x)

)
'

'
(
δ x[η]− δp(u)[η](x)

)
· nm,u

(
p(u)(x)

)
+
(
x−p(u)(x)

)
· δ
(
nm,u

(
p(u)(x)

))
[η] (39)

where higher order terms have been neglected.

We analyse separately the three terms:

• The first term involves the variation of x and can be easily computed by using (34) and

(36):

(x̃− x) · nm,u
(
p(u)(x)

)
=

NΓnm
i∑

I=1

N
Γnm
i

I (ξ) η
Γnm
i
I

 · nm,u (p(u)(x)
)

(40)

• The second term involves the variation of p(u): by using (35) and (37) one gets(
p(u+η)(x̃)− p(u)(x)

)
· nm,u

(
p(u)(x)

)
'

'
N

Γm
j∑

I=1

((
N

Γm
j

I

(
ζ̃(η)

)
−N

Γm
j

I (ζ)
)(

X
Γm
j

I + u
Γm
j

I

)
+N

Γm
j

I (ζ) η
Γm
j

I

)
· nm,u

(
p(u)(x)

)
'

'
N

Γm
j∑

I=1

(
∂αN

Γm
j

I (ζ)
(
X

Γm
j

I + u
Γm
j

I

)
+N

Γm
j

I (ζ) η
Γm
j

I

)
· nm,u

(
p(u)(x)

)
(41)

where α = ζ̃(η) − ζ. In the last step we have used a first order Taylor expansion for

N
Γm
j

I near ζ. Also, in both steps higher order terms have been neglected. Comparing this

expression with (34) yields

(∂α x) · nm,u
(
p(u)(x)

)
+

N
Γm
j∑

I=1

N
Γm
j

I (ζ) η
Γm
j

I

 · nm,u (p(u)(x)
)

(42)

10The notation used for the term δp(u)[η](x) is slightly incorrect and misleading. A rigorous definition is the

one used in equation (41):

p(u +η) (X+(u+η)(X))− p(u) (X+u(X))
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Since the normal vector is orthogonal to the tangent plane (hence to any tangent vector

∂α x), the first contribution is zero.

• The third term involves the variation of nm,u:

(x−p(u)(x)) ·
(
nm,u+η

(
p(u+η)(x̃)

)
− nm,u

(
p(u)(x)

))
(43)

which is zero: indeed, x−p(u)(x) is parallel to nm,u
(
p(u)(x)

)
(because of the minimality

properties of p(u)(x)), and any unit norm vector is orthogonal to its variation11.

In the end one gets

δg
(u)
N [η](X) =

NΓnm
i∑

I=1

N
Γnm
i

I (ξ) η
Γnm
i
I −

N
Γm
j∑

I=1

N
Γm
j

I (ζ) η
Γm
j

I

 · nm,u (p(u)(x)
)

(44)

with ξ and ζ being the natural coordinates of, respectively, the starting point X (or equivalently

x in the deformed configuration) and the projection p(u)(x).

It is important to note that this derivation is correct only if the mortar surface is smooth

near p(u)(x). If the discretization of the boundary is not differentiable at p(u)(x), neither

nm,u
(
p(u)(x)

)
nor δ

(
nm,u

(
p(u)(x)

))
[η] are defined (see e.g. p(0)(x) = x6 in Figure 4): in this

situation the normal vector is defined as a unit norm vector in direction x−p(u)(x) (the sense

has to be chosen so that the vector points outwards) and term (43) is assumed to be zero. This

approximation could be equivalently obtained by replacing the sharp angle in the mesh with a

differentiable surface (see Figure 5).

Figure 5: To define the outer normal in points where the surface is not differentiable, one may

approximate sharp angles with C1 junctions (similarly to how mollifiers are used in functional

analysis to approximate non-smooth functions [2]).

11The norm of a unit vector is constant, hence

0 = δ(v ·v) = (δ v) · v+v ·(δ v) = 2v ·(δ v)
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3 Algorithm

In order to use the mortar method, an algorithm based on multiple steps is carried out (see

Figure 6). In the following paragraphs each step will be described in detail.

Start

Identification of candidates for
the active contact area

Coupling of the facets on
the two sides

Computation of normals,
gaps and local coordinates

on quadrature points

Computation of extra
entries of the stiffness
matrix and of the RHS

Solution of modified
linear system

Convergence?

Active area?

End

Update
positions

Delete
candidate

Figure 6: Diagram describing the mortar algorithm.
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3.1 Identification of candidates for the active contact area

In the previous section, we have supposed the active boundaries Γnm and Γm to be known. In

most application this is not true, and specialized algorithms have to be applied in order to find

an initial guess for the active area (identifying exactly the active area at this stage is impossible

if the solution is not known in advance).

Several efficient algorithms have been designed to solve this problem, but their description

and implementation are outside the scope of this paper. As such we will suppose that two sets

of facets Γ̃nm = {Γnmi } and Γ̃m = {Γmi }, which are guesses for Γnm and Γm respectively, are

provided by the user. Observe in particular that multiple separate active areas may be present

(see Figure 7), hence we do not suppose the elements of Γ̃nm (and of Γ̃m as well) to be adjacent.

Ωm

Ωnm

Γm1

Γm2
Γm3

Γnm1

Γnm2

Γnm3
Γnm4

Γnm5

Γnm6

Figure 7: Identification of the active contact area. In red the elements of Γ̃nm, in blue the

elements of Γ̃m.

3.2 Coupling of the facets on the two sides

One of the most crucial phases of the algorithm is the approximation12 of the projection function

p(ϕ). As such, it is split in two sub-steps: in the first one, the coupling step, the algorithm gathers

informations about the neighborhood of the facets belonging to the non-mortar side.

For each non-mortar facet Γnmi a list of mortar facets π (Γnmi ) ⊆ Γ̃m is considered. The

elements of π (Γnmi ) represent the possible destinations of the projection operator from a point

of Γnmi . As such they are found (heuristically) by identifying, for each of the nodes Xnm
j of

12Two types of numerical error prevent, in general, the computation of the exact value of p(ϕ): the first one

is due to the discretization of the boundaries (e.g. Γm
1 * Γm in Figure 7), the second one is introduced by the

approximation of p, which may be necessary because of its non-linearity (see Section 2.3).
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Γnmi , the mortar facet whose nodes have the smallest average distance from Xnm
j :

π (Γnmi ) := {arg min
Γm
k ∈Γ̃m

1

NΓm
k

NΓm
k∑

l=1

‖XΓm
k
l −X

Γnm
i
j ‖, for j = 1, . . . , NΓnm

i } (45)

where {XΓm
k
i }N

Γm
k

l=1 represent the positions of the nodes of Γmk ∈ Γ̃m.

Problems may arise in this phase if the size of Γnmi is too big when compared with the average

size of the destination facets. Indeed, if this is the case, the projection of points X ∈ Γnmi which

are too far from the nodes may lay on elements not belonging to π (Γnmi ), as shown in Figure 8.

A possible solution to this issue involves the inclusion in π (Γnmi ) of all the facets which are

the closest to some point X ∈ Γnmi . In general this is computationally expensive, since some

kind of adaptive sampling on Γnmi would be needed. An easier to implement (but less general)

solution exploits the symmetry of the contact constraints (18) and is described in Section 3.8.

Ωm

Ωnm

Γm1
Γm2 Γm3

Γnm1X

p(X)

Xnm
1

Xnm
2

Figure 8: Γm1 and Γm3 belong to π (Γnm1 ), since they are the closest facets to xnm1 and xnm2

respectively. However Γm2 is not included in π (Γnm1 ), hence the computation of p(x) could be

inaccurate or even lead to errors.

3.3 Computation of normals, gaps and local coordinates on quadrature points

After the coupling step has been completed, it becomes possible to carry out the approximation

of the projection function: in order to find the projection of a given point x ∈ Γnmi , it is

projected on each of the possible destinations Γmj ∈ π(Γnmi ); then the “best” (in some sense

that will be defined) of the results is chosen as approximation of the projection.

It is important to note that undeformed boundaries are used instead of the deformed ones,

which are unknown. Indeed, we suppose that the following first order approximation holds:

p(u)(X+u(X)) ' p(0)(X) ∀X ∈ Γnm (46)

Afterwards, an iterative procedure is applied to provide corrections to this assumption (see

Section 3.6).
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Given a point x ∈ Γnmi on the non-mortar side and a mortar facet Γmj ∈ π(Γnmi ), the problem

of finding the projection of x onto Γmj can be cast in the following form:

p(0)(x; Γmj ) := arg min
xm∈Γm

j

‖xm − x ‖2 (47)

which is equivalent to

p(0)(x; Γmj ) := arg min

ζ∈Ω
Γm
j

ref

d(ζ;x,Γmj )2 := arg min

ζ∈Ω
Γm
j

ref

‖
N

Γm
j∑

I=1

N
Γm
j

I (ζ) X
Γm
j

I − x ‖2 (48)

where Ω
Γm
j

ref is the reference element corresponding to Γmj , i.e. the domain of ϕΓm
j :

Γmj ≡ ϕ
Γm
j

(
Ω

Γm
j

ref

)
(49)

If the elements of the local basis are smooth functions, unbounded for ‖ ζ ‖ → ∞ (which

is always true in the case of polynomials), problem (48) can be solved by looking for global

minima first: by differentiating in a generic direction α one obtainsN
Γm
j∑

I=1

N
Γm
j

I (ζ) X
Γm
j

I − x

 ·
N

Γm
j∑

I=1

∂αN
Γm
j

I (ζ) X
Γm
j

I

 = 0 ∀α ∈ Rd−1 (50)

In general this leads to a system of d − 1 non-linear equations, whose solutions {ζ̂k} are the

stationary points of d(· ;x,Γmj )2.

Now a sub-routine is applied in order to select the best projection within the set of stationary

points Ẑ := {ζ̂k}:

1. The point ζ̂l ∈ Ẑ which minimizes d(· ;x,Γmj )2 over Ẑ is found and removed from Ẑ.

2. If ζ̂l belongs to Ω
Γm
j

ref , it is picked and the routine ends.

3. The projection of ζ̂l onto Ω
Γm
j

ref is found by solving (heuristically or exactly) the problem

ζ̂
new

l := arg min

ζ∈Ω
Γm
j

ref

‖ ζ−ζ̂l‖ (51)

4. ζ̂
new

l is added to Ẑ.

5. If ζ̂
new

l minimizes d(· ;x,Γmj )2 over Ẑ, it is picked and the routine ends.

6. Otherwise ζ̂
new

l is removed from Ẑ and the routine restarts from step 1 (the cardinality

of Ẑ has decreased by 1).
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This procedure (stationary point search + best projection selection) is repeated for all mortar

facets in π (Γnmi ). Among the projections obtained {xmk }
|π(Γnm

i )|
k=1 , with natural coordinates

{ζk}
|π(Γnm

i )|
k=1 , the final approximation of the projection p(0)(x) is

p(0)(x) := arg min
k=1,...,|π(Γnm

i )|
‖xmk − x ‖ (52)

with corresponding natural coordinates ζ. Also, in this step it is possible to identify the facet

Γm
j

on which the projection destination lies.

The normal vector can now be defined by normalizing the relative position between points13:

nm,0
(
p(0)(x)

)
:= s

x−p(0)(x)

‖x−p(0)(x)‖
(53)

with

s = sign
((
p(0)(x)− x

)
· nnm,0 (x)

)
(54)

where nnm,0 (x) represents the outer normal vector to Γnmi at point x, which always exists

(provided the elements of the basis {NΓnm
i

I } are smooth enough).

Moreover the normal gap in the undeformed configuration g
(0)
N (x) can be easily found as

g
(0)
N (x) = s ‖x−p(0)(x)‖ (55)

See Section 5.1 for a simple example of application of this step.

3.4 Computation of extra entries of the stiffness matrix and of the RHS

The previous steps provide the informations needed for the computation of the normal gap at any

non-mortar point. This knowledge is used to compute numerically the coefficients introduced

in (25) and (30), by applying quadrature formulae to the integrals appearing in the weak

formulations (23) and (29).

Given some quadrature points {ξp}
np

p=1 ⊆ ZΓnm
i and corresponding weights {wp}

np

p=1 ⊂ R,

the following approximation is considered:∫
Γnm
i

f(X) dX '
np∑
p=1

fΓnm
i

(ξp)‖anmp ‖wp (56)

anmp is the normal of the tangent vector, whose norm is equal to the determinant of the jacobian

of the mapping ϕΓnm
i : Γref → Γnmi (see Section 2.1), computed on the quadrature point ξp.

Moreover, we use the subscript Γnmi to indicate the composition with the mapping ϕΓnm
i , e.g.

fΓnm
i

= f ◦ ϕΓnm
i .

13An alternative (simpler) definition is given by:

nm,0
(
p(0)(x)

)
:= nm,0

(
p(0)(x)

)
However, this expression is less general, since it cannot be applied when nm,0

(
p(0)(x)

)
is undefined, i.e. if p(0)(x)

lies on the boundary of a facet (see Figure 5).
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3.4.1 Lagrange multipliers approach

In the Lagrange multipliers approach, one needs to compute∫
Γnm
i

λδg
(u)
N [η] dX '

np∑
p=1

λΓnm
i

(ξp)
(
δg

(u)
N [η]

)
Γnm
i

(ξp)‖anmp ‖wp (57)

The first term has been defined in (24):

λΓnm
i

(ξp) =

MΓnm
i∑

J=1

M
Γnm
i

J (ξp)λ
Γnm
i
J (58)

The second term has been computed in (44), and is approximated by
(
δg

(0)
N [η]

)
Γnm
i

(ξp)

(see Section 3.6):

(
δg

(u)
N [η]

)
Γnm
i

(ξp) '

NΓnm
i∑

I=1

N
Γnm
i

I (ξp) η
Γnm
i
I −

N
Γm
j∑

I=1

N
Γm
j

I (ζp) η
Γm
j

I

 · nm,0 (p(0)(Xp)
)

(59)

where Xp := ϕΓnm
i (ξp) and Γmj is the facet on which the projection p(0)(Xp) lies, and ζp are

the natural coordinates of p(0)(Xp) on Γmj .

Applying the previous step (see Section 3.3) with starting point x := Xp yields

(
δg

(u)
N [η]

)
Γnm
i

(ξp) '

NΓnm
i∑

I=1

N
Γnm
i

I (ξp) η
Γnm
i
I −

N
Γm
j,p∑

I=1

N
Γm
j,p

I (ζp) η
Γm
j,p

I

 · nm,0 (p(0)(Xp)
)

(60)

where variables with a bar are the ones obtained in the previous step.

By comparing (58) and (60), it is possible to observe that the approximation of each term

of the sum (57) is linear in both lagrange multipliers (λ
Γnm
i
J ) and virtual displacements (η

Γm
i
I

and η
Γm
j,p

I ). This is true only because of the approximation u ' 0 in the variation of the normal

gap: if this assumption were dropped, non-linearities in the displacements u would appear.

In the end, each term of the sum (57) can be written as

NΓnm
i∑

I=1

MΓnm
i∑

J=1

λ
Γnm
i
J η

Γnm
i
I · µpIJ −

N
Γm
j,p∑

I=1

MΓnm
i∑

J=1

λ
Γnm
i
J η

Γm
j,p

I · νpIJ (61)

where 
µpIJ := M

Γnm
i

J (ξp)N
Γnm
i

I (ξp)‖anmp ‖wp nm,0
(
p(0)(Xp)

)
νpIJ := M

Γnm
i

J (ξp)N
Γm
j,p

I (ζp)‖anmp ‖wp nm,0
(
p(0)(Xp)

) (62)

A comparison with (23) and (25) shows that each µpIJ and νpIJ provides a contribution to

some coefficient mil. The indices i and l may be identified by using the global numbering of

the nodes instead of the local indexing used in the formulae above: i can be obtained from the
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global index of the virtual displacement, whereas j is linked to the global index of the Lagrange

multiplier.

A similar derivation for the integral∫
Γnm
i

δλ g
(u)
N dX '

np∑
p=1

δλΓnm
i

(ξp)
(
g

(u)
N

)
Γnm
i

(ξp)‖anmp ‖wp (63)

leads to

NΓnm
i∑

I=1

MΓnm
i∑

J=1

δλ
Γnm
i
J

(
X

Γnm
i
I + u

Γnm
i
I

)
· µpIJ −

N
Γm
j,p∑

I=1

MΓnm
i∑

J=1

δλ
Γnm
i
J

(
X

Γm
j,p

I + u
Γm
j,p

I

)
· νpIJ (64)

where µpIJ and νpIJ are the same as before. A comparison with (23) and (25) shows that each

µpIJ and νpIJ provides a contribution to some coefficient mkj , in a symmetric way with respect

to the first integral. Hence we have checked that the coefficients mkl appearing in the first and

second equation of (25) are the same.

Moreover, the terms which do not depend on the displacements u, i.e.

NΓnm
i∑

I=1

MΓnm
i∑

J=1

δλ
Γnm
i
J X

Γnm
i
I · µpIJ −

N
Γm
j,p∑

I=1

MΓnm
i∑

J=1

δλ
Γnm
i
J X

Γm
j,p

I · νpIJ (65)

provide contributions to some gj coefficient (once the variation δλ
Γnm
i
J is factored out).

3.4.2 Penalty approach

In the penalty approach, one needs to compute∫
Γnm
i

εpeng
−
N

(u)
δg

(u)
N [η] dX '

np∑
p=1

εpen

(
g−N

(u)
)

Γnm
i

(ξp)
(
δg

(u)
N [η]

)
Γnm
i

(ξp)‖anmp ‖wp (66)

The expression of the normal gap can be obtained by plugging (7) into (24):

(
g

(u)
N

)
Γnm
i

(ξp) =

NΓnm
i∑

I=1

N
Γnm
i

I (ξp) x
Γnm
i
I −

N
Γm
j,u∑

I=1

N
Γm
j,u

I (ζ(u)
p ) x

Γm
j,u

I

 · nm,u (p(u)(xp)
)

(67)

where

xγI := Xγ
I + uγI for γ ∈ {Γnmi ,Γmj } (68)

and xp := ϕΓnm
i (ξp) + u(ϕΓnm

i (ξp)). Also, Γmj,u is the mortar facet which contains p(u)(xp), and

ζ
(u)
p represent the natural coordinates of p(u)(xp) on Γmj,u.

For all terms except the deformed positions xγI , the approximation u ' 0 is applied (see
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Section 3.6):

(
g

(u)
N

)
Γnm
i

(ξp) '

NΓnm
i∑

I=1

N
Γnm
i

I (ξp) x
Γnm
i
I −

N
Γm
j∑

I=1

N
Γm
j

I (ζp) x
Γm
j

I

 · nm,0 (p(0)(Xp)
)

=

=

NΓnm
i∑

I=1

N
Γnm
i

I (ξp)
(
X

Γnm
i
I + u

Γnm
i
I

)
−
N

Γm
j,p∑

I=1

N
Γm
j,p

I (ζp)

(
X

Γm
j,p

I + u
Γm
j,p

I

) · nm,0 (p(0)(Xp)
)
(69)

where the same notation as (59) and (60) has been used. The values with a bar are the ones

obtained in the previous step (see Section 3.3) with starting point x := Xp.

It is important to notice that the normal penetration, and not the normal gap, appears in

the weak formulation (29): hence one must make sure that no contribution to the weak form

comes from the terms of the sum (66) which have a positive normal gap g
(u)
N (xp) > 0. Since the

displacement field u is not known, it is impossible to know the sign of the exact normal gap. As

such, a check is performed on the gap computed for the undeformed configuration: if g
(0)
N (Xp)

is positive, the whole p-th contribution is put to zero.

The second term is approximated by
(
δg

(0)
N [η]

)
Γnm
i

(ξp), which has been computed in (60):

(
δg

(0)
N [η]

)
Γnm
i

(ξp) =

NΓnm
i∑

J=1

N
Γnm
i

J (ξp) η
Γnm
i
J −

N
Γm
j,p∑

J=1

N
Γm
j,p

J (ζp) η
Γm
j,p

J

 · nm,0 (p(0)(Xp)
)

(70)

By comparing (69) and (70), it is possible to observe that the approximation of each term of

the sum (66) is linear in both displacements (u
Γm
i
I and u

Γm
j,p

I ) and virtual displacements (η
Γm
i
I and

η
Γm
j,p

I ). Similarly to the lagrange multiplier case, this is true only because of the approximation

u ' 0 in the variation of the normal gap: if this assumption were dropped, non-linearities in

both displacements u and virtual displacements η would appear.

In the end, each term of the sum (66) can be written as

εpen

NΓnm
i∑

I=1

NΓnm
i∑

J=1

(
η

Γnm
i
J

)T
ΞpIJ

(
X

Γnm
i
I + u

Γnm
i
I

)
+
N

Γm
j,p∑

I=1

N
Γm
j,p∑

J=1

(
η

Γm
j,p

J

)T
Υp
IJ

(
X

Γm
j,p

I + u
Γm
j,p

I

)
+

−
N

Γm
j,p∑

I=1

NΓnm
i∑

J=1

(
η

Γnm
i
J

)T
Φp
IJ

(
X

Γm
j,p

I + u
Γm
j,p

I

)
−
NΓnm

i∑
I=1

N
Γm
j,p∑

J=1

(
η

Γm
j,p

J

)T
Ψp
IJ

(
X

Γnm
i
I + u

Γnm
i
I

)
(71)
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where
ΞpIJ := N

Γnm
i

I (ξp)N
Γnm
i

J (ξp)‖anmp ‖wp
(
nm,0

(
p(0)(Xp)

)
⊗ nm,0

(
p(0)(Xp)

))
Υp
IJ := N

Γm
j,p

I (ζp)N
Γm
j,p

J (ζp)‖anmp ‖wp
(
nm,0

(
p(0)(Xp)

)
⊗ nm,0

(
p(0)(Xp)

))
Ψp
JI := Φp

IJ := N
Γm
j,p

I (ζp)N
Γnm
i

J (ξp)‖anmp ‖wp
(
nm,0

(
p(0)(Xp)

)
⊗ nm,0

(
p(0)(Xp)

)) (72)

A comparison with (29) and (30) shows that each ΞpIJ , Υp
IJ , Φp

IJ and Ψp
IJ provides a con-

tribution to some coefficient δKij . The indices i and j may be identified by using the global

numbering of the nodes instead of the local indexing used in the formulae above: i can be

obtained from the global index of the virtual displacement, whereas j is linked to the global

index of the displacement.

Moreover, the terms which do not depend on the displacements u, i.e.

εpen
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 (73)

represent contributions to some δ f i coefficient (once the virtual displacements η
Γnm
i
J and η

Γm
j,p

J

are factored out).

3.5 Solution of modified linear system

When the modified linear system ((26) for the Lagrange multipliers approach and (31) for the

penalty method) has been assembled, it is solved to find the nodal values of the displacement field

(and of the Lagrange multipliers if present). In particular, some efficient algorithms exploiting

the structure of the modified system have been designed [1].

3.6 Convergence check

In most of the previous steps, we used the assumption that normal gaps and projections behave

similarly in the undeformed (X) and in the deformed configuration (x):

g
(u)
N (x) ' g(0)

N (X), p(u)(x) ' p(0)(X) and nm,u(p(u)(x)) ' nm,0(p(0)(X)) (74)

In general this is not the case, since deformations due to contact may change quite drastically

the results of the projection operator.

To tackle this issue, once the projection operator has been approximated and the displace-

ments have been found by solving the modified linear system, a check is performed on the

22



magnitude of the results: if some norm of the nodal values of u (for example the L2-norm) is

larger than a threshold, the results are assumed to be inaccurate, and an iterative procedure is

carried out, otherwise the algorithm proceeds to the next step.

The iterations proceed in the following way: the approximate deformed configuration X +

u(X) which comes from the modified linear system solution is used to replace the undeformed

configuration:

Ωnew := Ω + u(Ω) (75)

Hence the non-mortar and mortar boundaries are updated as well:

(Γnm)∗ := Γnm + u(Γnm) and (Γm)∗ := Γm + u(Γm) (76)

Now, as shown in Figure 6, these updated values are used to restart the algorithm from the

coupling step.

This procedure is motivated by the hypothesis of “small deformations”, and is equivalent

to the application of a fixed point method to solve non-linearities. Performance and robustness

can be improved by considering a Newton-Raphson approach [1].

It is important to note that this iterative approach is particularly useful in the penalty

case. Indeed, if the penalty parameter is too large, issues with the condition number of the

modified system may appear (see Section 3.8), hence there is an upper bound to the values

among which εpen may be chosen; as discussed in Section 2.2.2, this usually leads to inaccuracy

in the solution, with presence of residual interpenetration. By applying the iterative procedure

and combining results from different iterations, a reduction of the interpenetration is achieved

(see Section 5.2).

3.7 Check on active area

A second important check on the solution has to be performed. As discussed in Section 3.1, the

active boundaries Γnm and Γm are not known in advance.

If corrections are not applied, the numerical solution may show non-physical features: in

particular traction may be present in the contact area even if the material does not have cohesive

properties. This phenomenon is of extreme importance in the Lagrange multipliers approach

because of the way contact constraints (18) are enforced14.

By looking at the continuous model (23), the second equation is used to enforce (weakly)

the contact between bodies: if, for example, Q = L2(Γnm), the equation is equivalent to an

14The presence of this phenomenon is of less magnitude in the penalty approach, but only if the penalty

parameter εpen is small enough. Indeed, the iterations described in Section 3.6 and the fact that the normal

penetration is used in the weak formulation (instead of the normal gap) tend to counterbalance this effect.
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Ωnm Ωnm

Ωm Ωm

Γnm1
Γnm2 Γnm1

Γnm2

Γm1
Γm2 Γm1

Γm2

Figure 9: Solutions of a contact problem between polygonal meshes: exact (left) and numerical

(right) configurations. In the numerical solution, the misclassification of Γnm1 as an active facet,

if not corrected, leads to non-physical traction between the objects.

orthogonality condition, which leads to

g
(u)
N = 0 in the L2(Γnm) sense (77)

With the Galerkin approximation this condition is only enforced on the average value of the

gap on each non-mortar facet:∫
Γnm
i

g
(u)
N (X) dX = 0 ∀Γnmi ∈ Γ̃nm (78)

which is approximated by a quadrature formula. This means that the contact constraint (17)

will be active (in a weak sense) on all facets belonging to Γ̃nm.

Now, suppose that Γnm1 ∈ Γ̃nm does not actually belong to the active area, i.e. in the exact

solution the normal gap on all Γnm1 is positive (see Figure 9). If the algorithm (as described

until now) is applied, then it will effectively lead to the presence of a non-physical (attractive)

force which keeps Γnm1 in contact with the mortar side, as shown in Figure 9. As a consequence,

one or more nodal values of the Lagrange multipliers (which represent repulsive forces between

the two objects) will be negative (see Section 5.3).

To correct the numerical results, it is enough to remove Γnm1 from Γ̃nm and restart the

algorithm from the original undeformed configuration15.

In general, to identify the “worst behaving” element, one can compute the nodal values of

the contact force by restricting the residual

r := K u − f (79)

on the non-mortar nodes. Now a check can be performed on each node: if the minimum value of

the normal component of the residual is too small, all the elements containing the corresponding

node are removed from Γ̃nm.
15Because of the iterative procedure described in Section 3.6, there might have been modifications in the

undeformed configuration. If any element is removed from the set of active facets, it is necessary to reject any of

the previously obtained displacement fields and restart from the original problem.
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3.8 Comments on the algorithm

The weak enforcement of contact constraints requires the computation of integrals only on

the non-mortar side. As such, in order to increase the accuracy of the method (but also its

computational cost), in the choice of the non-mortar surface one should pick the boundary with

the biggest number of facets. Indeed, if this is the case, the algorithm maximizes the number

of points on which the projection operator is sampled. Since p(0) is only piecewise continuous,

a globally higher number of quadrature points is the only non-adaptive procedure which can

increase the accuracy of the solution without any mesh refinement.

Moreover, when solving the modified linear system (see Section 3.5), one should be careful

to avoid numerical instability: in the penalty approach, a larger penalty parameter εpen yields

more accurate results, but, in order to have a well-conditioned matrix, one should not choose

it too big when compared with the elements of the stiffness matrix of the undeformed system;

similarly, in the Lagrange multipliers approach, one has to be aware that the solution of the

system has components with very diversified orders of magnitude, since the ratio between the

values of the Lagrange multipliers and of the displacement field is usually (depending on the

dimension of the system) comparable with the Young’s modulus.

These two considerations are motivated by the fact that contact forces (−λn or εpeng
−
N n)

compensate the internal stresses due to the deformation caused by the contact itself.

Another problem for the well-posedness of the method is the choice of the space Qh in

which to approximate the Lagrange multipliers (see Section 2.2.1). General theoretical results

for mixed PDE (see e.g. [3]) show that Qh should not be too large with respect to V h (where

the displacements are approximated): for example, in general, if Lagrange multipliers and

displacements are approximated with piecewise polynomials of the same degree (on the same

mesh), the algebraic problem deriving from the weak formulation is underdetermined. This

has also been tested in MATLAB [9] and with the implementation described in Section 4: if

linear finite elements are used for both λ and u, the modified matrix appearing in (26) may be

singular.

To tackle this issue, a safe solution involves the choice of different polynomial degrees for

displacements and Lagrange multipliers, e.g. P2 and P1 respectively (see Section 5.3). Other

solutions, which were not investigated by this project, require an accurate well-posedness anal-

ysis in the specific case of problem (23). Also, one may want to understand how the number

of quadrature points np affects this issue: it has been observed empirically that lowering the

number of quadrature points may (in some cases) lead from well-posed to ill-posed modified

systems (26).
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4 Implementation

The algorithm described in the previous section has been implemented in the framework pro-

vided by Akantu, an open-source object-oriented finite elements library [6]-[7].

The three central steps of the algorithm (facet coupling, computation of normals and eval-

uation of modified linear system) are coded in C++, using a object-oriented design which will

allow an easier extension of the mortar method to other approaches (e.g. barrier and augmented

Lagrange methods).

The execution of the other steps, including the two checks described in Sections 3.6 and 3.7,

is carried out in Python to achieve a better efficiency in the solution of linear systems. Indeed,

at the time of writing, one of the objectives of Akantu developers is the migration from C++ to

Python for most linear algebra computations.

4.1 Object-oriented portion of the code

A general diagram representing the object-oriented portion of the code is shown in Figure 10.

The mother class MortarSolver contains all the features that are strictly needed for a

mortar solver:

Members

• Solid mechanics model and mesh of the problem to which the mortar method is applied.

Through the model, the method can obtain informations about the boundary conditions.

Also, it can access functions provided by the finite element engine (FEEngine) of the

model [8], such as interpolation on elements and computation of normals.

• List of non-mortar and mortar facets (see Γ̃nm and Γ̃m in Section 3.1). Each is stored as

an ElementGroup, an Akantu type which allows elements to be indexed based on their

ElementType (e.g. P1 segments, P2 triangles, etc.). These variables need to be initialized

with “initActiveArea”.

• List of nodal positions and displacements. The former are used to store temporary changes

in the undeformed configuration (see Section 3.6) without affecting the model (by using

“updatePositions”). The latter are currently unused, but are designed to store the solution

of the modified linear system.

• List of all the possible destinations for the projection operator for each non-mortar facet

(see π(Γnmi ) in Section 3.2).
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MortarSolver

- SolidMechanicsModel * model
- Mesh & mesh
- ElementGroup * non mortar facets, * mortar facets
- Array<Real> * positions
- Vector<Real> * displacements
- ElementTypeMapArray<Array<Element>> * coupled m facets poss
- ElementTypeMapArray<Element> * coupled m facets
- UInt spatial dimension
- ElementTypeMapArray<Vector<Real>> * normals
- ElementTypeMapArray<Real> * normal gaps
- ElementTypeMapArray<Vector<Real>> * projections internal coords
- UIntVectorList * extra m rows, * extra m cols
- MatrixList * extra m values
- RealVectorList * extra v values

+ updatePositions(): void
+ initActiveArea(): void
+ couple(): void
+ computeNormals(): void
+ applyContact(): void
+ removeNode(): void (virtual)
- arrayToVector(): Vector<type>
- findClosestFacet(): void
- findNormalFromPoint(): void
- projectFromPoint(): void
- solveProjection(): void
- mapNodeToRow(): UInt
- getTangentNorm(): void
- assembleLocalExtra(): void (pure virtual)

MortarSolverLagrange

- UInt degree lagrange
- Vector<Real> * lagrange multipliers
- Array<Vector<Real>> * lagrange nodes

+ removeNode(): void
- computeLagrangeDOFs(): UInt
- mapLagToCol(): UInt
- initLagrangeOnElement(): void
- assembleLocalExtra(): void
- assembleLocalExtraEntriesPerType(): void
- computeLocalExtraEntries(): void

MortarSolverPenalty

- Real penalty parameter

- assembleLocalExtra(): void
- assembleLocalExtraEntriesPerType(): void
- computeLocalExtraEntries(): void

Figure 10: Class collaboration diagram for the C++ portion of the code.

27



• List of actual destinations for the projection operator for each quadrature point of the

non-mortar facets (see Γm
j

in Section 3.3).

• List of normals, normal gaps and natural coordinates of the projection for each quadrature

point of the non-mortar facets (see nm,0(p(0)(Xp)), g
(0)
N (Xp) and ζ

(0)
p in Section 3.4).

• List of extra entries of the modified linear system (see Section 3.4), and corresponding

position (rows and columns). The position of the entries is obtained by considering the

global numbering of the nodes of each element.

Methods

• “couple” carries out the coupling step (see Section 3.2), by finding (with “findClosest-

Facet”) the mortar facet which is the closest to each non-mortar node.

• “computeNormals” carries out the step described in Section 3.3: for each quadrature point

on the non-mortar facet Γnmi , it calls the function “findNormalFromPoint”, which tries to

find the projection on all elements of π(Γnmi ) by using the sub-routine “projectFromPoint”.

In particular the function “solveProjection” is applied to solve16 equation (50).

• “assembleLocalExtra” computes the extra contributions to the modified system, and must

be implemented in the daughter classes. In particular “getTangentNorm” is used to com-

pute the term ‖anmp ‖ in (56).

• “removeNode”, given a node which needs to be removed from the active area, reduces

the set of non-mortar facets accordingly. It also resets the undeformed configuration (see

Section 3.7). This method is overridden in the case of Lagrange multipliers, because some

additional variables need to be reset.

The daughter class MortarSolverLagrange implements the Lagrange multipliers approach.

As such it contains the additional members:

• Degree of the polynomials with which to approximate the Lagrange multipliers.

• Nodal values of the Lagrange multipliers. They are currently unused, but are designed to

store a portion of the solution of the modified linear system.

• List of positions of Lagrange multipliers nodes, which may or may not coincide with nodes

of the mesh. They are used to identify the columns in which extra entries of the linear

system are located.

16At the moment of writing, the solver is able to find the solutions of the projection equations only in the few

cases where they have a closed-form (e.g. P1 elements in 2D and P1 triangular elements in 3D).
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The MortarSolverPenalty class implements the penalty approach, and has an additional

member corresponding to the penalty parameter εpen.

Both daughters implement the methods which are used to compute the additional entries

of the system: “assembleLocalExtra” and “assembleLocalExtraPerType” are used to cycle over

all element types of the non-mortar facets; then “computeLocalExtraEntries” carries out the

computations described in Section 3.4.

Additionally, the daughter implementing the Lagrange multiplier version needs some meth-

ods to manage properly the numbering of the Lagrange nodes and to compute the basis {Mf
I }M

f

I=1

(see Section 2.2.1) on quadrature points.

4.2 Portion of the code in Python

The Python implementation has been based on examples included in the Akantu 2.3 distribution

[7].

First, the system is initialized. In order to identify the active area, some flags (physical prop-

erties) are set while defining the geometry of the mesh [10]. In this way, portions of the boundary

are given “non-mortar” and “mortar” status (see Section 3.1). Then the “createGroupsFrom-

StringMeshData” function provided by Akantu [8] is used to create an ElementGroup for each

side.

After the mortar solver has been declared and initialized, the iterative loop starts. In

particular, a single while loop is used to carry out both iterative procedures:

• The convergence check (see Section 3.6) is performed by computing the L2-norm of the dis-

placement vector. If convergence has not been reached yet, then a counter is incremented,

the undeformed configuration is updated, and the loop is repeated.

• The active area check (see Section 3.7) is performed just after the solution of the modified

linear system. The residual r is computed and restricted to the non-mortar nodes. Now,

if the minimum value of r is negative and too big (in absolute value) when compared with

the maximum residual, the counter described in the previous point is reset, along with the

undeformed configuration. Also, the method “deleteNode” is called, so that the mortar

solver may modify its internal list of active facets by removing the worst-behaving node

(i.e. the one with the maximum traction).
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5 Examples

5.1 Example 1: computation of the projection operator for linear finite ele-

ments in 2D

In order to provide a simple example of the application of the step described in Section 3.3,

we consider the configuration shown in Figure 11, where linear finite elements are used to

approximate the geometry of the problem. The possible destinations of the projection from x

have already been identified as π (Γnm1 ) = {Γm1 ,Γm2 }.

First we look for a projection on Γm1 . The distance function can be written as

d (ζ;x,Γm1 )2 = ‖
2∑
I=1

NI(ζ)Xm
I − x ‖2 = ‖1− ζ

2
Xm

1 +
1 + ζ

2
Xm

2 − x ‖2 (80)

where the usual lagrangian basis on linear elements has been used (the nodes coincide with the

extreme points of the segment).

The stationary points are found by solving the following equation:

0 =
∂

∂ζ
d(ζ;x,Γm1 )2 =

(
1− ζ

2
Xm

1 +
1 + ζ

2
Xm

2 − x

)
· X

m
2 −Xm

1

2
(81)

which leads to the solution

ζ̂1 =
2 (Xm

2 −Xm
1 )

‖Xm
2 −Xm

1 ‖2
·
(
x−Xm

1 +Xm
2

2

)
(82)

Since the solution is unique, we only need to check whether ζ̂1 belongs to Ω
Γm

1
ref = [−1, 1].

Let us suppose it does: then we take ζ1 = ζ̂1 and

x1 :=
2∑
I=1

NI(ζ1)Xm
I

Γm1

Γm2

Γnm1

ζ
ζ

x

x1

x̂2

Xm
1

Xm
2

Xm
3

Figure 11: We want to identify the projection of x on the mortar side. x1 is the projection

onto Γm1 (which is the desired result). x̂2 is the initial guess for the projection onto Γm2 , which

is then replaced by the feasible x2 = Xm
2 .
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as shown in Figure 11.

By proceeding similarly for Γm2 we obtain a stationary point

ζ̂2 =
2 (Xm

3 −Xm
2 )

‖Xm
3 −Xm

2 ‖2
·
(
x−Xm

2 +Xm
3

2

)
(83)

Now, if ζ̂2 < −1, we pick ζ2 = −1 and x2 := Xm
2 as shown in Figure 11.

The only step left is the comparison between ‖x1−x ‖ and ‖x2−x ‖, which leads to the

choice of x1 as the desired projection.

5.2 Example 2: application of the mortar approach to a simple 2D problem

We consider a contact problem for two bodies in 2D. The undeformed configuration is shown in

Figure 13. On ΓnmD (the right boundary of Ωnm) and ΓmD (the left boundary of Ωm) we enforce

Dirichlet boundary conditions (respectively homogeneous and non-homogeneous), whereas on

all other boundaries homogeneous Neumann conditions are applied. If no contact condition is

enforced, the displacement field is uniform for each of the bodies (see Figure 14).

The penalty-based mortar method is applied to the problem, by using the implementation

presented in Section 4. The initial guess for the active area is given by the left boundary of Ωnm

and the right boundary of Ωm (respectively Γ̃nm and Γ̃m in Figure 13). The penalty parameter

is εpen = 107 Pa·m, the Young’s modulus of the bodies is E = 3 · 108 Pa and a characteristic

dimension of the system is L = 1 m.

After 202 iterations, the norm of the displacements becomes lower than the tolerance εtol =

2·10−6·(number of nodes): hence the stopping condition is satisfied, and the algorithm ends (see

Figure 15). Also, in order to understand how the iterations affect the solution, the evolution of

the normal penetration near the bottom of the contact area is shown in Figure 12.

As a comparison, the solution obtained with the Lagrange multipliers approach is shown in

Figure 16: in this case only 6 iterations were necessary.

Figure 12: Zoom view of the lower part of the active area after 20 (left), 40 (middle) and 80

(right) iterations in the penalty approach.
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ΓmD

ΓnmD

Γ̃m

Γ̃nm

Ωm Ωnm

Figure 13: Undeformed configuration of the problem described in Example 2, discretized by

a triangle-based linear mesh.

Figure 14: Solution of the problem described in Example 2, neglecting the contact constraints.

Since no forces are present, the motion of each body is rigid.
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Figure 15: Solution of the problem described in Example 2, using the penalty approach to

enforce contact constraints. In particular 4 non-mortar facets were removed from the active

area. The horizontal component of the residuals is shown (see color scale on the side).

Figure 16: Solution of the problem described in Example 2, using the Lagrange multipliers

approach to enforce contact constraints. In particular 3 non-mortar facets were removed from

the active area. The horizontal component of the residuals is shown (see color scale on the side).
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5.3 Example 3: application of the mortar method to a hertzian problem

We consider a contact problem between a deformable semicircle and a rigid plane (see Figure 17).

All features of the solution (displacements, active area, contact pressure) can be approximated

by applying the hertzian approach [4].

Figure 17: Undeformed (left) and deformed (right) configuration of the hertzian unilateral

problem. The contact may be caused by an external force pushing down or by a fixed displace-

ment of the top boundary.

In particular the expected profile of the contact pressure is non-differentiable at the extreme

points of the contact area:

p(x) = p0

√
1−

(x
a

)2
(84)

where 2a represents the contact length and x is a local coordinate, which is taken equal to 0 on

the symmetry axis of the system.

The mortar method is used to solve numerically a displacement-controlled hertzian problem.

In particular a MATLAB [9] implementation of the method is applied to obtain the results

presented in the following paragraphs.

We consider the triangle-based computational mesh shown in Figure 18: in particular, local

refinements are used to get a higher accuracy near the contact zone. The radius of the semicircle

is 1 m, and the Young’s modulus of the material is E = 3 · 108 Pa. Second degree (P2) finite

elements are applied to approximate geometry and displacements.

On ΓD (the top boundary of the semicircle) non-homogeneous boundary conditions are en-

forced, whereas on the rest of the boundary homogeneous Neumann conditions are considered.

In particular, if contact conditions are neglected, the displacement field is uniform, correspond-

ing to pure translation (see Figure 19).

Since some interpenetration between the body and the wall appears (see Figure 19), it is

necessary to apply the mortar method: in particular we choose to use the Lagrange multipliers

approach. The Lagrange multipliers are approximated as a piecewise linear function (P1) to
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ensure the well-posedness of the numerical method (see Section 3.8).

As initial guess for the active area, we pick all facets which would overlap with the wall if

no contact conditions were enforced (Γ̃nm in Figure 18).

After the first iteration, the pressure profile is the one shown in Figure 21a. Since the

extreme values are too negative, one of the extreme facets of Γ̃nm is removed. After 8 iterations

(and 8 removed non-mortar facets), the pressure profile has better features (see Figure 21b) and

the algorithm ends. The final configuration is shown in Figure 20.

Similar results can be obtained with the penalty approach. However, from the empirical

results it appears that the Lagrange multiplier method is able to provide a better approximation

of the hertzian pressure profile.

ΓD

Γ̃nm

Figure 18: Undeformed configuration of the problem described in Example 3, discretized by

a triangle-based quadratic mesh.

Figure 19: Solution of the problem described in Example 3, neglecting the contact constraints.

Since no forces are present, the motion of the body is rigid.
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Figure 20: Solution of the problem described in Example 3, using the mortar method to

enforce contact constraints.
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Figure 21: Contact pressure profile after the first iteration (a) and after the last iteration

(b). In blue, the Lagrange multiplier profile. In red, the pressure obtained from the residual

(see Section 3.7). In black the hertzian solution.
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6 Conclusion and outlook

In this paper, the most important theoretical features of the mortar method have been de-

scribed and rigorously derived, with a particular focus on the penalty and Lagrange multipliers

approaches. A detailed description of an algorithm to apply the mortar method has been pro-

vided, as well as a brief overview of an implementation of said algorithm in C++ and Python.

The correctness of the implementation has been checked in some test cases. In particular, in

the last example the numerical results appear to agree quite well with the analytical solution,

in terms of contact pressure.

Some of the envisioned extensions of the code, which were not possible due to time con-

straints, are (from simplest to most complicated):

• Inclusion of the active area check (see Section 3.7) in the C++ portion in a object-oriented

fashion, so that inheritance may be used to specialize this step in the penalty and Lagrange

multipliers approaches17.

• Application of an iterative non-linear solver to find the stationary points in the compu-

tation of the projection operator (see Section 3.3) in cases in which closed-form solutions

are not available.

• Implementation of ad hoc algorithms to solve the modified linear system by exploiting its

particular structure (in particular in the Lagrange multipliers case).

• Enhancement of the robustness of the method in cases of non-smoothness of the bound-

aries, in particular in the normal computation step (see Section 3.3).

• Extension of the method to the case of dynamic analysis; a mortar-based predictor-

corrector approach is necessary for the enforcement of contact constraints in this case.

• Extension of the method to the case of finite deformations; in particular, in this case the

approximation (74) does not hold any more, and the algorithm needs to be specialized by

applying an iterative Newton-Raphson approach [1].

17An estimate on the contact pressure may be found by looking at the penetration gN (in the penalty case) or

at the nodal values of the Lagrange multipliers (in the Lagrange multiplier case).
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