Non-intrusive adaptive surrogate modeling of parametric frequency-response problems DAVIDE PRADOVERA¹ & Fabio Nobile²

¹University of Vienna [davide.pradovera@univie.ac.at | pradovera.github.io] -²EPF Lausanne

TARGET PROBLEM

Parametric frequency-domain LTI system of size $\gg 1$:

 $\omega \in \mathbb{C}, \ \theta \in \mathbb{R}^d \quad \rightsquigarrow \quad \text{find } \mathbf{x}(\omega, \theta) \ : \ \omega \mathbf{E}(\theta) \mathbf{x}(\omega, \theta) = \mathbf{A}(\theta) \mathbf{x}(\omega, \theta) + \mathbf{b}(\omega, \theta)$

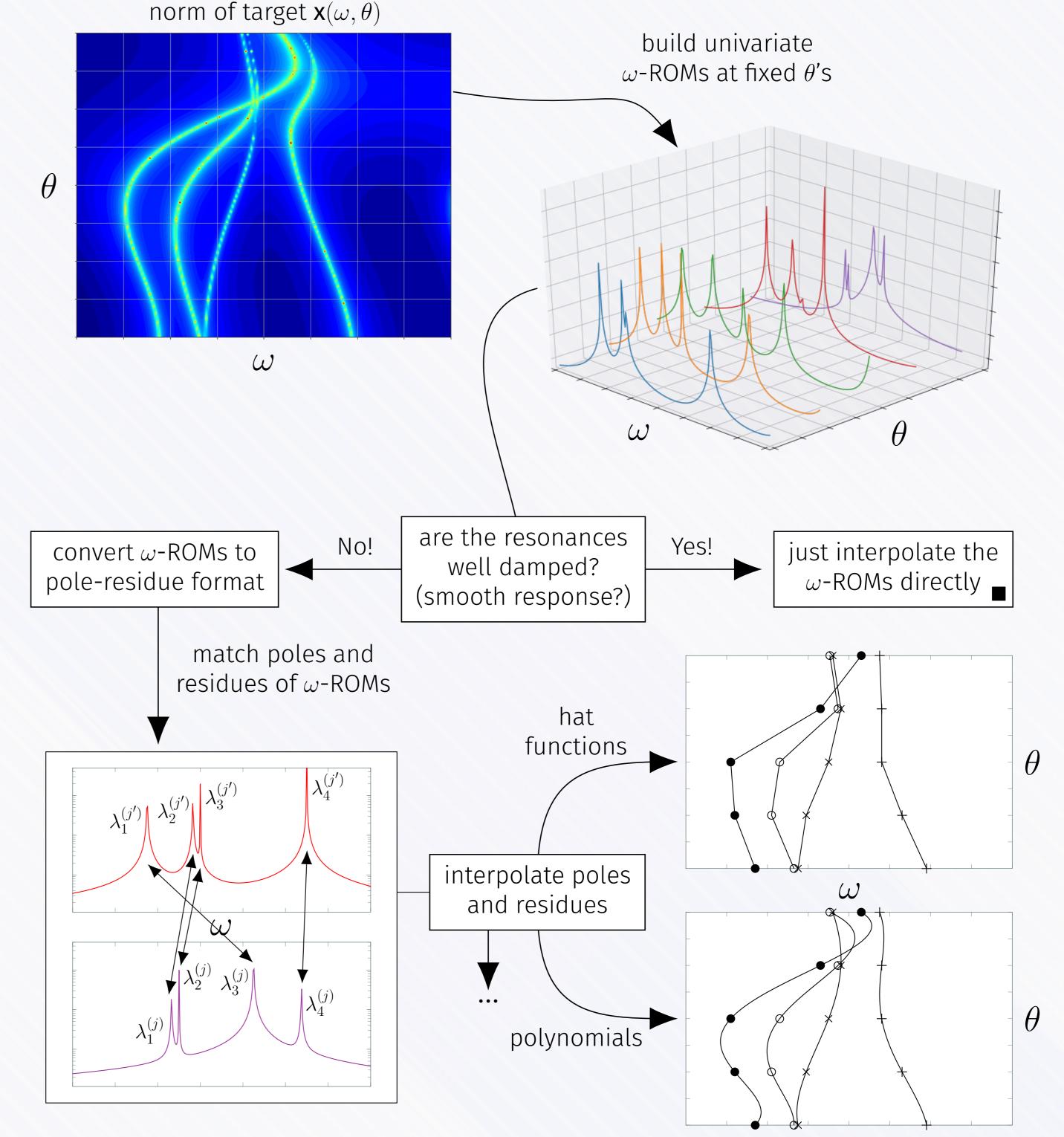
Objectives:

- ▶ Non-parametric MOR: approximate $\omega \mapsto \mathbf{x}(\omega, \theta)$ for a fixed θ . This is often done with *rational functions*, i.e., ratios of polynomials.
- ▶ Parametric MOR: approximate $(\omega, \theta) \mapsto \mathbf{x}(\omega, \theta)$. This is much more complicated, since poles and residues (wrt ω) will depend on θ .

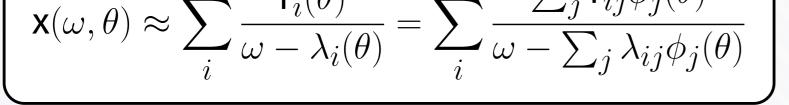
STRUCTURE OF SURROGATE MODEL

We seek an approximation in **parametric rational pole-residue format**:

$$\mathbf{r}_{i}(\theta) = \sum_{j} \mathbf{r}_{ij} \phi_{j}(\theta)$$



SAMPLE WORKFLOW

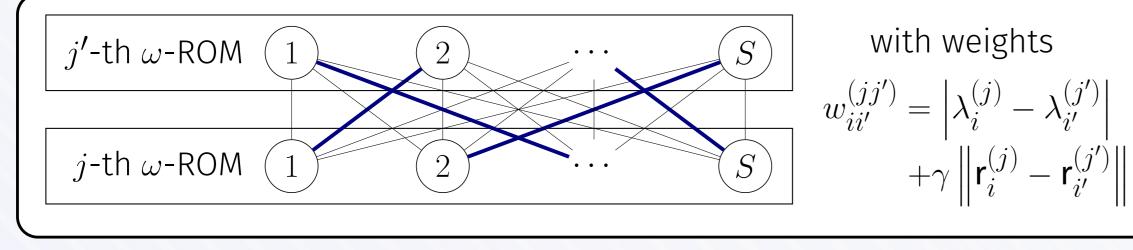


The functions ϕ_j are a given scalar-valued basis, e.g., hat functions, polynomials, RBFs, ..., so we only need to find the expansion coefficients $\{\mathbf{r}_{ij}\}_{ij}$ and $\{\lambda_{ij}\}_{ij}$. To this aim, we first gather **data: univariate** ω **-ROMs in pole-residue form**

$$\left\{ \text{given } \{\theta_j\}_j \subset \mathbb{R}^d \text{, build ROMs } \left\{ \widetilde{\mathbf{x}}_j(\omega) = \sum_i \frac{\mathbf{r}_i^{(j)}}{\omega - \lambda_i^{(j)}} \approx \mathbf{x}(\omega, \theta_j) \right\}_j$$

MATCHING STRATEGY

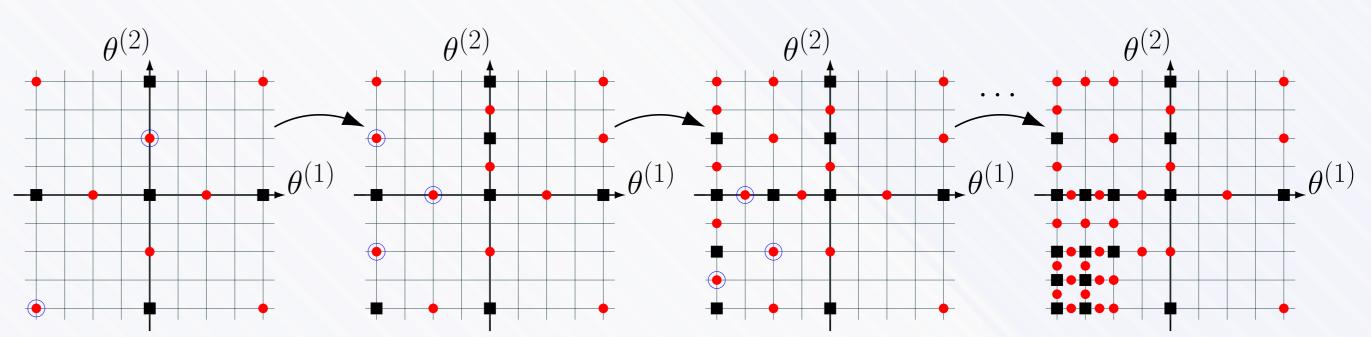
Before we can use $\{\lambda_i^{(j)}\}_{ij}$ to find $\{\lambda_{ij}\}_{ij}$ (and the same for the **r**'s) we need to match the poles for different *j*'s, otherwise **we might be combining information pertaining to different resonating modes!** For this, we look for *optimal permutations* of the terms in the pole-residue expansions: we build a weighted graph



and we find a "matching" set of edges that minimizes the total sum of weights.

NON-INTRUSIVE ADAPTIVE SAMPLING VIA LOCALLY ADAPTED SPARSE GRIDS

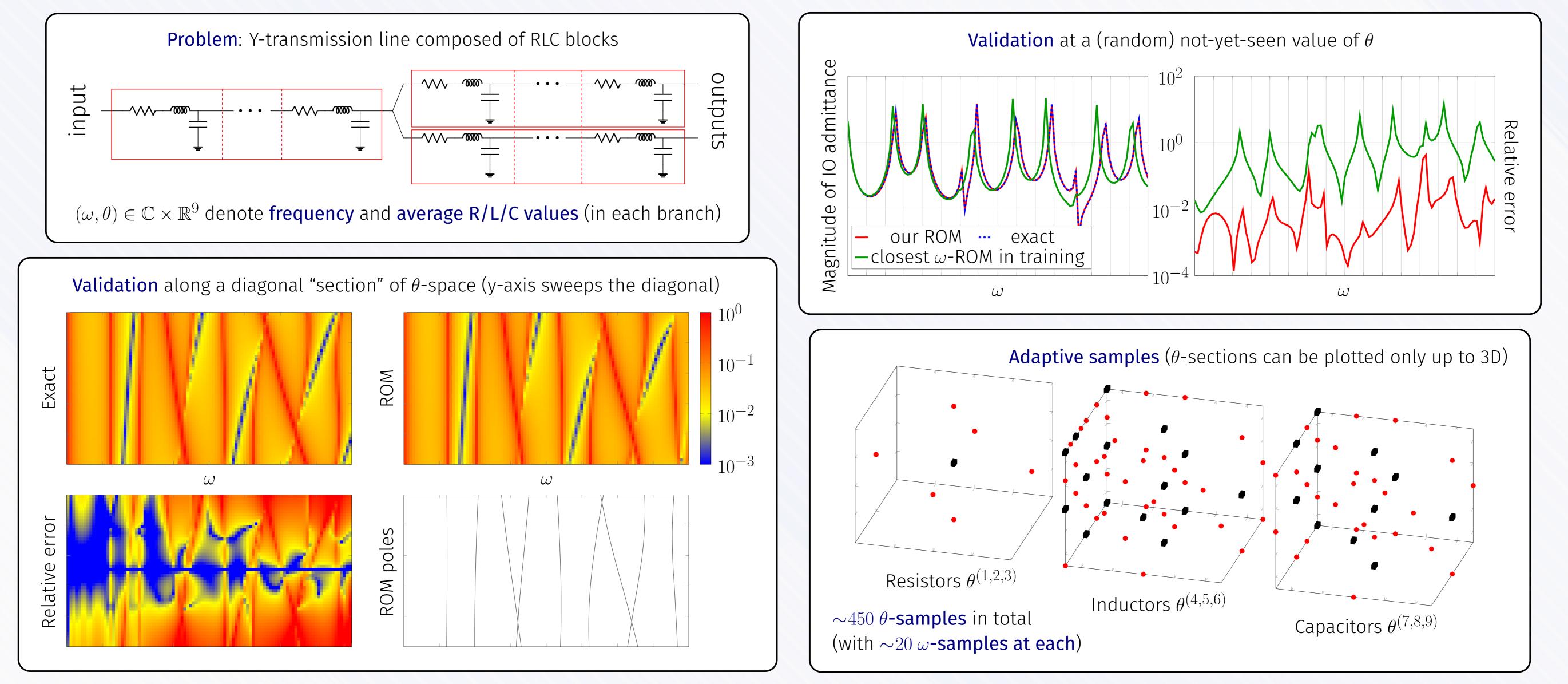
Sparse grids allow for structured localized refinements in arbitrary θ -dimension d: given a set of SG points, we can define a discrete hierarchical SG neighborhood. We can use this for non-intrusive adaptive sampling over θ :



- We use a collection of SG points (not necessarily an SG in the usual sense) as training set. These are the black squares.
- We use their discrete neighborhood as test set. These are the red dots. If a point of the test set is badly approximated, we move it to the training set (blue circles).

This requires expensive computations at all points of the training and test sets.

NUMERICAL RESULTS: IMPEDANCE OF PARAMETRIC TRANSMISSION LINE



References

- > DP, "Interpolatory minimal rational model order reduction of parametric problems lacking uniform inf-sup stability", SIAM J. Numer. Anal. 58, 2020.
- ► F. Nobile & DP, "Non-intrusive double-greedy parametric model reduction by interpolation of frequency-domain rational surrogates", ESAIM:M2AN 55, 2021. ⇒
- **DP**, "Model order reduction based on functional rational approximants for parametric PDEs with meromorphic structure", PhD thesis, 2021.
- **DP** & F. Nobile, "Frequency-domain non-intrusive greedy Model Order Reduction based on minimal rational approximation", Sci. Comput. Electr. Eng. 36, 2021.
- F. Bonizzoni & DP, "Shape optimization for a noise reduction problem by non-intrusive parametric reduced modeling", Proc. WCCM-ECCOMAS2020, 2021.

